You are here

Feature Stories

  • Cooling materials super-quickly, called rapid solidification, prevents the normal crystalline structures of materials from forming, often creating unique properties in the process. If single crystal growth techniques sit at one end of the materials synthesis spectrum, promoting the growth of that material’s equilibrium crystalline structure, rapid solidification techniques promote the opposite effect, cooling the material so quickly from liquid to solid, that the crystals formed are small, or in some cases non-existent, becoming amorphous or glass-like with no discernable crystalline pattern to their overall molecular structure. (3/27/17)

  • When it comes to creating new materials, single crystals play an important role in presenting a clearer picture of a material’s intrinsic properties. A typical material will be comprised of lots of smaller crystals and the grain boundaries between these crystals can act as impediments, affecting properties such as electrical or thermal resistance. (3/15/2017)

  • Two-dimensional materials are a bit of a mind-bending concept. Humans live in a three-dimensional world, after all, where everything observed in our natural world has height, width, and depth. And yet when graphene—a carbon material unique in its truly flat, one-atom-deep dimension—was first produced in 2004, the mind-bending concept became reality and an unexplored frontier in materials science. Ames Laboratory scientists Pat Thiel and Michael Tringides are explorers on that frontier, discovering the unique properties of two-dimensional (2D) materials and metals grown on graphene, graphite, and other carbon coated surfaces. (02/09/2017)
  • Creating materials in their solid state can be tricky, but offers some advantages over other methods. It typically involves subjecting the component elements to some type of mechanical force—such as stress, shear or strain—to drive a reaction.

    “You eliminate the need for solvents, so it removes potentially harmful substances from the waste stream,” said Ames Laboratory scientist and Iowa State University Distinguished Professor Vitalij Pecharsky, “and it offers greater selectivity so you can steer it toward a specific reaction. Most processing is done at room temperature so energy inputs are reduced and the resulting end products may be meta-stable as well.”  (1/26/17)

  • Ames Laboratory has pioneered the use of high-pressure gas atomization to produce smooth, spherical metal powders that represent a dramatic improvement over traditionally manufactured powders. The process has garnered the laboratory at least 16 patents over the last two decades, and created a spin-off company, IPAT, recently acquired by Praxair, which exclusively licenses Ames Laboratory’s titanium atomization patents and is racing to introduce to an eager marketplace. Find out more about this break-through technology.