You are here

Division of Materials Sciences and Engineering

Ames Laboratory scientist Pat Thiel was one of 12 women honored during a ceremony Jan. 13 for their impact on Iowa State University. For the past 10 years, the Carrrie Chapman Catt Center for Women and Politics have selected prominent women for the Women Impacting ISU calendar. READ MORE

Research performed by U.S. Department of Energy’s Ames Laboratory Associate Scientist Durga Paudyal was recently featured on the cover of the November 2015 issue of Physical Review Letters. READ MORE

Four Ames Laboratory Science Undergraduate Laboratory Internships (SULI) students wrapped up their fall semester session with a poster session and luncheon on December 8.  The students, Kaiser Aguirre, Adam Dziulko, Shannon Goes, and Kathryn White spent the last 16 weeks working in research laboratories on projects with Ames Laboratory scientist/mentors. READ MORE

After a career that spans more than six decades, Ames Laboratory senior metallurgist Karl Gschneidner will be retiring in January 2016. Read more about his life's work HERE.

Surya Mallapragada says the bio- and bio-inspired materials developed in her lab have a lot of potential to improve human health.  Photo by Christopher Gannon.
See more at: http://www.news.iastate.edu/news/2015/12/07/biomedical

DMSE Vision

World-leading research in accelerated discovery, design, and synthesis of bulk and nanostructured materials with novel and controlled functionality through cross-disciplinary teams integrating state-of-the-art experimental, computational and theoretical methods.

 

Welcome

The Division of Materials Sciences and Engineering (DMSE) performs materials research across a broad spectrum ranging from grand science challenges and discovery research which addresses fundamental limitations in our understanding of complex states of matter to directed research that guides design of new materials to advance energy technologies. Basic research conducted within the DMSE is performed primarily through funding provided by the Office of Basic Energy Sciences. Our directed research receives funding from a number of Department of Energy technologies offices including the Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy as well as work for others contracts. 

 

Core Capabilities

  • Developing and utilizing advanced characterization methods, especially neutron and x-ray scattering, angle-resolved photoemission, solid-state NMR (including Dynamical Nuclear Polarization), ultra-sensitive chemical and structural analysis, and ultra-precise frequency measurements.
     
  • Design and synthesis of materials for energy-related applications including energy-efficient conversion, generation, transmission, and storage. Examples include invention of metamaterials, discovery of magnetocaloric materials, development of lead-free solders and magnets, and advancing materials and theory of superconductivity.
     
  • Developing theory and computational methods to accelerate materials discovery and design. Impacts include developing an accurate and efficient electronic structure algorithm for f-electron materials, an adaptive algorithm for crystal structure prediction and phase exploration, breakthrough tools for quantifiable spin dynamics prediction, and combining density functional theory with the coherent-potential approximation to predict bulk alloy properties.
     
  • Home to the well-known Materials Preparation Center (MPC), a unique national resource for making materials that enable science. Expertise includes the preparation and production of alloys, high-purity rare earth material, and single crystals.