You are here

Division of Materials Sciences and Engineering

 Our research to improve refrigeration technology through caloric cooling, CaloriCool, is on the current cover of MRS Bulletin! Vitalij Pecharsky, CaloriCool director and Ames Laboratory scientist, is one of the guest editors of the issue and Ames Laboratory scientist Jun Cui is also a contributor in the issue. To access the issue, click HERE.

Ames Laboratory scientists Ruslan Prozorov, Makariy Tanatar, and Hyunsoo Kim are  part of a collaboration of researchers who discovered a type of exotic superconductivity that relies on highly unusual electron interactions, and whose work was recently published in Science Advances.  They partnered with the University of Maryland, Iowa State University, Berkeley Lab, University of Otago, and University of Wisconsin-Milwaukee on the work. READ MORE

As increasing consumer interest in electric vehicles drives the demand for supplies of lithium and cobalt (ingredients in lithium-ion batteries), the Critical Materials Institute will begin new efforts this July to maximize the efficient processing, use, and recycling of those elements. READ MORE

Ames Lab researchers and members of the CaloriCool  consortium Luke Griffin, Julie Slaughter and Vitalij Pecharsky, with the CaloriSMART (Small Modular Advanced Research-scale Test-station) successfully show refrigeration level cooling with a small sample of gadolinium. READ MORE 

Under Secretary of Energy for Science Paul Dabbar, right, hears about advanced powder synthesis from Ames Laboratory's Emma White, Director Adam Schwartz and Iver Anderson during a tour on March 27.  READ MORE

DMSE Vision

World-leading research in accelerated discovery, design, and synthesis of bulk and nanostructured materials with novel and controlled functionality through cross-disciplinary teams integrating state-of-the-art experimental, computational and theoretical methods.



The Division of Materials Sciences and Engineering (DMSE) performs materials research across a broad spectrum ranging from grand science challenges and discovery research which addresses fundamental limitations in our understanding of complex states of matter to directed research that guides design of new materials to advance energy technologies. Basic research conducted within the DMSE is performed primarily through funding provided by the Office of Basic Energy Sciences. Our directed research receives funding from a number of Department of Energy technologies offices including the Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy as well as work for others contracts. 


Core Competencies

  • Developing and utilizing advanced characterization methods, especially neutron and x-ray scattering, angle-resolved photoemission, solid-state NMR (including Dynamical Nuclear Polarization), ultra-sensitive chemical and structural analysis, and ultra-precise frequency measurements.
  • Design and synthesis of materials for energy-related applications including energy-efficient conversion, generation, transmission, and storage. Examples include invention of metamaterials, discovery of magnetocaloric materials, development of lead-free solders and magnets, and advancing materials and theory of superconductivity.
  • Developing theory and computational methods to accelerate materials discovery and design. Impacts include developing an accurate and efficient electronic structure algorithm for f-electron materials, an adaptive algorithm for crystal structure prediction and phase exploration, breakthrough tools for quantifiable spin dynamics prediction, and combining density functional theory with the coherent-potential approximation to predict bulk alloy properties.
  • Home to the well-known Materials Preparation Center (MPC), a unique national resource for making materials that enable science. Expertise includes the preparation and production of alloys, high-purity rare earth material, and single crystals.