CMI Project 2.1.23: Enhancing HDDR powders

Current COVID-19 Community Level: MEDIUM (Updated Aug. 11) CDC COVID-19 County Check

Michael Kesler at Oak Ridge National Laboratory leads the CMI project "Enhancing Hydrogenation-disproportionation-desorption-recombination (HDDR) powders"

This project attempts to develop high performance magnet powders for use in different applications, including bonded magnets, with a focus on understanding of thermomagnetic processing for achieving superior magnetic properties over standard processing routes. While application of high fields can affect reaction rates and pathways by altering thermodynamic barriers or interfacial free energies (e.g., the Zeeman Effect, which effectively increases reactivity of the processing gases), little systematic work has been done on permanent magnets. Compounds with high magnetocrystalline anisotropy are ideal candidates to explore mechanism by which large magnetic fields can enhance grain alignment, chemical ordering, and phase selection to improve remanence and saturation magnetization.