This project develops accurate ab initio electronic structure methods that greatly reduce scaling with system size, to facilitate the application of these methods to heterogeneous catalysis for reactions that are important to the Department of Energy. The methods developed in this research will be generally applicable to heterogeneous catalysis and associated interfacial phenomena. The developed electronic structure methods will be interfaced with advanced methods in non-equilibrium statistical mechanics that will enable the study of diffusion processes in nanopores, as well as the chemical reactivity.
Computational investigations of heterogeneous catalysis require the explicit incorporation of thousands of atoms in the simulations. Consequently, such simulations require algorithms that are able to take effective advantage of pre-exascale and exascale computers that are expected to become available within the next 4-5 years. The electronic structure method development will focus on fragmentation methods, the development or new dataflow algorithms, the exploration of novel computer architectures that can potentially reduce the energy/power consumption without significant adverse effects on time-to-solution, the development of interoperability among three no-cost electronic structure programs, and the creation of a quantum chemistry data base (QCDB) that can be used by any electronic structure program, all enabled by machine learning paradigms.
This research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Computational and Theoretical Chemistry program. Ames National Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DEAC02-07CH11358.
Principal Investigator: Mark Gordon
Co-PIs: Theresa Windus, James Evans
Staff Scientists: Yong Han
Post Docs: Dipayan Datta