Bioinspired Materials

Personnel

Project Leader(s):
Surya Mallapragada

Principal Investigators:
Mufit Akinc, Surya Mallapragada, Marit Nilsen-Hamilton, Ruslan Prozorov, Alex Travesset, David Vaknin

Postdoctoral Research Associates:
Wenjie Wang

Overview

The goal of this highly-interdisciplinary project is the synthesis and characterization of bioinspired hierarchical self-assembling polymer-inorganic nanocomposites. It seeks to answer the following questions:

  • What are the general design rules for bioinspired self-assembled polymer nanocomposites? To answer this question, a highly synergistic combination of theory and experiment will be implemented.
  • What experimental techniques or approaches can be developed or combined to probe the assembly at multiple length scales?

This work yields a robust and modular method for developing bioinspired hierarchical materials, with control over the formation as well as placement of an inorganic phase in the nanocomposite structure. This, in turn, leads to development of novel hybrid materials, lightweight and energy efficient, with potential for applications in fuel cells, spintronics, quantum computing, or magnetic actuators. This closely knit group, involving biochemists, chemists, materials scientists, engineers, and physicists, provides a unique skill set for this work; the success of their synergy has already been demonstrated by their bioinspired synthesis of magnetic nanoparticles.

Subtasks in this Project are:

  • Development of multiscale self-assembling bioinspired hybrid materials using bottom-up approaches. We design hierarchically self-assembling templates (synthetic polymers as well as protein- and peptide-based templates), and use bioinspired methods for room temperature synthesis of several energy-relevant hybrid materials with hierarchical order that are difficult to synthesize otherwise. (S. Mallapragada, M. Nilsen-Hamilton, M. Akinc, T. Prozorov, G. Kraus)
  • Development of techniques to probe assembly at multiple length scales and properties of these nanocomposites. We use a combination of solid-state NMR, scattering, and electron microscopy techniques to investigate the nanostructure and composition, and other characterization techniques to investigate the magneto-mechanical properties of these hybrid materials. (K. Schmidt-Rohr, B. Narasimhan, D. Vaknin)
  • Development of computational methods for understanding general design rules for self-assembled polymer nanocomposites. We develop and implement molecular simulations, using high performance computational approaches as a powerful tool to understand the underlying principles of self-assembly of complex structures, phase transformation between competing phases, as well as the response of a self assembled system to external stimuli. (A. Travesset-Casas, M. Lamm)

Highlights

Previous ImageNext Image

Publications

2014
Rathnayake S S; Mirheydari M; Schulte A; Gillahan J E; Gentit T; Phillips A N; Okonkwo R K; Burger K N J; Mann E K; Vaknin D; Bu W; Agra-Kooijman D M; Kooijman E E . 2014. Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains. Biochimica Et Biophysica Acta-Biomembranes. 1838:482-492. abstract
Export: Tagged BibTex

2013
Lindemann W R; Xiao T; Wang W J; Berry J E; Anderson N A; Houk R S; Shinar R; Shinar J; Vaknin D . 2013. An X-ray fluorescence study on the segregation of Cs and I in an inverted organic solar cell. Organic Electronics. 14:3190-3194. abstract
Export: Tagged BibTex

Wang W J; Sung W; Ao M; Anderson N A; Vaknin D; Kim D . 2013. Halide Ions Effects on Surface Excess of Long Chain Ionic Liquids Water Solutions. Journal of Physical Chemistry B. 117:13884-13892. abstract
Export: Tagged BibTex

Feng S R; Wang L J; Palo P; Liu X P; Mallapragada S K; Nilsen-Hamilton M . 2013. Integrated Self-Assembly of the Mms6 Magnetosome Protein to Form an Iron-Responsive Structure. International Journal of Molecular Sciences. 14:14594-14606. abstract
Export: Tagged BibTex

Liu X P; Ge Q W; Rawal A; Parada G; Schmidt-Rohr K; Akinc M; Mallapragada S K . 2013. Templated and Bioinspired Aqueous Phase Synthesis and Characterization of Mesoporous Zirconia. Science of Advanced Materials. 5:354-365. abstract
Export: Tagged BibTex

Sung W; Vaknin D; Kim D . 2013. Different Adsorption Behavior of Rare Earth and Metallic Ion Complexes on Langmuir Mono layers Probed by Sum-Frequency Generation Spectroscopy. Journal of the Optical Society of Korea. 17:10-15. abstract
Export: Tagged BibTex

2012
Knorowski C; Travesset A . 2012. Dynamics of DNA-programmable nanoparticle crystallization: gelation, nucleation and topological defects. Soft Matter. 8:12053-12059. abstract
Export: Tagged BibTex

Knorowski C; Travesset A . 2012. Nanorods in functionalized block-copolymer gels: Flexible ladders and liquid crystalline order in curved geometries. Europhysics Letters. 100:56004. abstract
Export: Tagged BibTex

Ma X; Klosterman L; Hu Y Y; Liu X P; Schmidt-Rohr K; Mallapragada S; Akinc M . 2012. Aqueous Route Synthesis of Mesoporous ZrO2 by Agarose Templation. Journal of the American Ceramic Society. 95:3455-3462. abstract
Export: Tagged BibTex

Wang W J; Pleasants J; Bu W; Park R Y; Kuzmenko I; Vaknin D . 2012. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: In situ X-ray scattering and spectroscopy studies. Journal of Colloid and Interface Science. 384:45-54. abstract
Export: Tagged BibTex