This rare earth metal shows us the future of our planet’s resources

Leaving aside meteorites that strike Earth’s surface and spacecraft that get flung out of its orbit, the quantity of materials available on this planet isn’t really changing all that much.

That simple fact of our finite resources becomes clearer and more daunting as the pace of technological change advances and our society requires an ever wider array of material inputs to sustain it. So for nearly as long as we’ve systematically extracted these substances, we’ve been trying to predict how long they will be able to meet our demand. How much can we pump from a well, or wrest from a mine, before we need to reconsider what we’re building and how?

Niron Magnetics aims to use cheap, widely available materials to make magnets for EVs and wind turbines.

Those predictions have grown increasingly complicated. And now it’s also a matter of how much we can pull from manufactured and discarded objects. Can we recycle parts of that iPhone, or the guts of that massive wind turbine? How much of any given object can we recirculate into our churning technological economy?

Estimates of how much material we’ll have access to in the future tend to have a tricky, often implicit assumption at their center: that we’ll be making roughly the same products with the same materials as today. But technology moves quickly, and by the time we understand what we might need next, or develop a specialized system to mine or recycle it, the next generation of tech might render all our assumptions obsolete. 

We’re in the middle of a potentially transformative moment. The materials we need to power our world are beginning to shift from fossil fuels to energy sources that don’t produce the greenhouse-gas emissions changing our climate. Metals discovered barely more than a century ago now underpin the technologies we’re relying on for cleaner energy, and not having enough of them could slow progress. 

Take neodymium, one of the rare earth metals. While far from a household name, it’s a metal that humans have relied on for generations. Since the early 20th century, neodymium has been used to give decorative glass a purplish hue. Today, it’s used in cryogenic coolers to reach ultra-low temperatures needed for devices like superconductors and in high-powered magnets that power everything from smartphones to wind turbines. 

Demand for neodymium-based magnets could outstrip supply in the coming decade. The longer-term prospects for the metal’s supply aren’t as dire, but a careful look at neodymium’s potential future reveals many of the challenges we’ll likely face across the supply chain for materials in the coming century and beyond. 

Read More from MIT Technology Review