You are here

Division of Materials Sciences and Engineering

Graduate student Eeshita Manna inspects an OLED array in the lab.

Graduate student Eeshita Manna inspects an OLED array in the lab. She and other Ames Laboratory researchers created an all-organic UV on-chip spectrometer that can be used in a variety of applications for sensing and analysis. READ MORE

Chris Strasburg discovered an interest in research while working in systems support and cybersecurity. He’s now Ames Laboratory’s cybersecurity manager and working toward a Ph.D. in computer science at Iowa State University, studying artificial intelligence approaches, automation of computer languages, and network security. READ MORE

Todd Zdorkowski (left) and Deb Covey present Ames Laboratory Director Adam Schwartz with the Federal Laboratory Consortium for Techology Transfer Mid-Continent Region Outstanding Laboratory Award. Zdorkowski received the award on behalf of the Lab at the FLC's Mid-Continent Region annual meeting on Aug. 26. 

The second piece of new equipment, a field-emission scanning electron microscope, arrived at Ames Laboratory's Sensitive Instrument Facility on Thursday, Sept. 24. Above, Ames Laboratory program director Matt Kramer, right, documents one of the several crates' safe arrival in the instrument's future home. 

Woooo Hooo! The first piece of equipment -- a $1.3 million focused ion beam microscope -- arrived today at Ames Laboratory's new Sensitive Instrument Facility!

DMSE Vision

World-leading research in accelerated discovery, design, and synthesis of bulk and nanostructured materials with novel and controlled functionality through cross-disciplinary teams integrating state-of-the-art experimental, computational and theoretical methods.



The Division of Materials Sciences and Engineering (DMSE) performs materials research across a broad spectrum ranging from grand science challenges and discovery research which addresses fundamental limitations in our understanding of complex states of matter to directed research that guides design of new materials to advance energy technologies. Basic research conducted within the DMSE is performed primarily through funding provided by the Office of Basic Energy Sciences. Our directed research receives funding from a number of Department of Energy technologies offices including the Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy as well as work for others contracts. 


Core Capabilities

  • Developing and utilizing advanced characterization methods, especially neutron and x-ray scattering, angle-resolved photoemission, solid-state NMR (including Dynamical Nuclear Polarization), ultra-sensitive chemical and structural analysis, and ultra-precise frequency measurements.
  • Design and synthesis of materials for energy-related applications including energy-efficient conversion, generation, transmission, and storage. Examples include invention of metamaterials, discovery of magnetocaloric materials, development of lead-free solders and magnets, and advancing materials and theory of superconductivity.
  • Developing theory and computational methods to accelerate materials discovery and design. Impacts include developing an accurate and efficient electronic structure algorithm for f-electron materials, an adaptive algorithm for crystal structure prediction and phase exploration, breakthrough tools for quantifiable spin dynamics prediction, and combining density functional theory with the coherent-potential approximation to predict bulk alloy properties.
  • Home to the well-known Materials Preparation Center (MPC), a unique national resource for making materials that enable science. Expertise includes the preparation and production of alloys, high-purity rare earth material, and single crystals.