You are here

Division of Materials Sciences and Engineering

Ames Laboratory Science Undergraduate Laboratory Internship (SULI) program student Katrina Fauser, who worked with mentor Tanya Prozorov, explains her research project to Ames Laboratory scientist Emily Smith during the session's closing poster session on Aug. 1.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, in collaboration with DOE’s Ames Laboratory, have reported an important and unexpected reaction mechanism — called “redox behavior” — on the surface of catalyst support materials that have application in the chemical industry. READ MORE

Ames Laboratory research was featured on back-to-back covers, June and July, of JOM, the Journal of the Minerals, Metals and Materials Society.

On May 30, Ames Laboratory hosted a workshop with representatives from other National Laboratories and scientists from around the country to discuss opportunities for single-crystal neutron diffraction studies of quantum materials under pressure – an area of expertise for Ames Laboratory. READ MORE

We're in the June issue of Popular Mechanics! Great image of ALNICO powder-- an iron alloy containing aluminum, nickel, and cobalt-- suspended in a directional magnetic field device called a Halbach array.

DMSE Vision

World-leading research in accelerated discovery, design, and synthesis of bulk and nanostructured materials with novel and controlled functionality through cross-disciplinary teams integrating state-of-the-art experimental, computational and theoretical methods.



The Division of Materials Sciences and Engineering (DMSE) performs materials research across a broad spectrum ranging from grand science challenges and discovery research which addresses fundamental limitations in our understanding of complex states of matter to directed research that guides design of new materials to advance energy technologies. Basic research conducted within the DMSE is performed primarily through funding provided by the Office of Basic Energy Sciences. Our directed research receives funding from a number of Department of Energy technologies offices including the Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy as well as work for others contracts. 


Core Competencies

  • Developing and utilizing advanced characterization methods, especially neutron and x-ray scattering, angle-resolved photoemission, solid-state NMR (including Dynamical Nuclear Polarization), ultra-sensitive chemical and structural analysis, and ultra-precise frequency measurements.
  • Design and synthesis of materials for energy-related applications including energy-efficient conversion, generation, transmission, and storage. Examples include invention of metamaterials, discovery of magnetocaloric materials, development of lead-free solders and magnets, and advancing materials and theory of superconductivity.
  • Developing theory and computational methods to accelerate materials discovery and design. Impacts include developing an accurate and efficient electronic structure algorithm for f-electron materials, an adaptive algorithm for crystal structure prediction and phase exploration, breakthrough tools for quantifiable spin dynamics prediction, and combining density functional theory with the coherent-potential approximation to predict bulk alloy properties.
  • Home to the well-known Materials Preparation Center (MPC), a unique national resource for making materials that enable science. Expertise includes the preparation and production of alloys, high-purity rare earth material, and single crystals.