You are here

Tunnel diode resonator for precision magnetic susceptibility measurements in a mK temperature range and large DC magnetic fields

TitleTunnel diode resonator for precision magnetic susceptibility measurements in a mK temperature range and large DC magnetic fields
Publication TypeJournal Article
Year of Publication2018
AuthorsKim, H, Tanatar, MA, Prozorov, R
JournalReview of Scientific Instruments
Volume89
Pagination094704
Date Published09
Type of ArticleArticle
ISBN Number0034-6748
Accession NumberWOS:000446159100055
KeywordsInstrumentation, penetration depth, physics, superconductors
Abstract

Precision radio-frequency measurements of the magnetic susceptibility using the tunnel diode resonator (TDR) technique are used to study the delicate effects in magnetic and superconducting materials. High resolution (in ppb range) measurements are particularly important for studies of the London and Campbell penetration depths in a superconductor and for the investigation of magnetic transitions in (anti)ferromagnets. Due to the small rf magnetic-excitation in a mOe range, the TDR is especially useful at low-temperatures in a mK range, if Joule heating generated in the TDR circuitry is efficiently removed and the circuit is stabilized with sub-mK precision. Unfortunately, the circuit has significant magnetic field dependence, and therefore, most of the precision TDR measurements at low-temperatures were conducted in zero magnetic field. In this work, we describe the design of a setup for precision TDR measurements in a dilution refrigerator down to similar to 40 mK with a 14 T superconducting magnet. The key features of our design are the separated electronics components and the placement of the most field sensitive parts in the field-compensated zone far from the center of solenoid as well as the heat-sinking at a higher temperature stage. The performance of the working setup is demonstrated using several superconductors. Published by AIP Publishing.

DOI10.1063/1.5048008
Custom 1

Complex Hydrides

Alternate JournalRev. Sci. Instrum.