You are here

Novel penta-graphene nanotubes: strain-induced structural and semiconductor-metal transitions

TitleNovel penta-graphene nanotubes: strain-induced structural and semiconductor-metal transitions
Publication TypeJournal Article
Year of Publication2017
AuthorsWang, Z, Cao, X, Qiao, C, Zhang, RJ, Zheng, YX, Chen, LY, Wang, SY, Wang, CZ, Ho, KM, Fan, YJ, Jin, BY, Su, WS
JournalNanoscale
Volume9
Pagination19310-19317
Date Published12
Type of ArticleArticle
ISBN Number2040-3364
Accession NumberWOS:000418098000037
Keywordsallotropes, augmented-wave method, basis-set, Carbon, chemistry, dynamics, Materials Science, nanocrystals, phase-transition, physics, Technology - Other Topics, total-energy calculations
Abstract

s calculations show that such penta-graphene nanotubes (PGNTs) are dynamically stable by phonon calculations, but transform from a tri-layer structure to a highly defective single-walled nanotube at low temperature in molecular dynamics simulations. We show that moderate compressive strains can drive structural transitions of (4,4), (5,5), and (6,6) PGNTs, during which the distances of neighboring carbon dimers in the inner shell have a sudden drop, corresponding to dimer-dimer non-bonding to bonding transitions. After such transition, the tubes become much more thermally stable and undergo semiconductor-metal transitions under increasing strain. The band gaps of PGNTs are not sensitive to chirality whereas they can be tuned effectively from visible to short-wavelength infrared by appropriate strain, making them appealing materials for flexible nano-optoelectronics. These findings provide useful insight into unusual phase transitions in low-dimensional systems.

DOI10.1039/c7nr06835b
Custom 1

Exploratory Theory