You are here

Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

TitleNear-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy
Publication TypeJournal Article
Year of Publication2014
AuthorsGuo, YJ, Rowland, CE, Schaller, RD, Vela, J
JournalAcs Nano
Volume8
Pagination8334-8343
Date Published08
Type of ArticleArticle
ISBN Number1936-0851
Accession NumberWOS:000340992300082
Keywordscation-exchange, colloidal nanocrystals, core/shell nanocrystals, emitting, germanium, germanium nanocrystals, giant, growth, IV/II-VI epitaxy, mesoporous germanium, near-IR, pbse quantum dots, photoluminescence, quantum dots, soft acids, suppressed blinking
Abstract

Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II-VI, III-V and IV-VI semiconductor quantum dots. Here, we use relatively unexplored IV/II-VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II-VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II-VI nanocrystals are reproducibly 1-3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative, recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II-VI nanocrystals. We expect this synthetic IV/II-VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

DOI10.1021/nn502792m
Custom 1

Not AL