You are here

Carbon-Based and Carbon-Supported Heterogeneous Catalysts for the Catalytic Conversion of Biomass

Carbon-based heterogeneous catalysts synthesized from renewable feedstock enable the conversion of biomass to biofuels and to biorenewable chemicals. The Tessonnier group uses approaches inspired from nature and from organic/organometallic chemistry to synthesize novel nanocarbon-based and nanocarbon-supported heterogeneous catalysts. For example, we recently developed basic catalysts made solely of C and N, which demonstrated an exceptional activity and stability for the synthesis of biodiesel, used as a model biomass conversion reaction.

Novel Intermetallic Phases by Design

Intermetallic compounds play important roles in modern functional materials, such as electronic devices, special alloys for usages in aerospace, superconductors, and energy storage and conversion. We are making quality single crystalline materials and to evaluate their electronic, magnetic, and thermoelectric properties. Student is expected to explore new intermetallic phases through various synthetic techniques.

Multifunctional Nanostructured Materials for Processing of Biomass

Students will work on a project aimed to prepare smart nanodevices for catalyzing sequences of chemical reactions to convert biomass into biorenewable fuels and chemical commodities. The nanostructured materials will be composed of organic and inorganic species that will work cooperatively to effectively promote chemical conversions behaving like nanosized assembly lines. The students will be trained in the synthesis and characterization of hybrid mesoporous materials.

Developing Reflected Differential Interference Contrast Microscopy

Metallic nanoparticles and nanostructures are of much interest due to a broad range in applications such as optoelectronics, biosensing, and medical diagnostics amongst others. The fabrication of many of these materials is done through lithographic means typically taking place on reflective surfaces such as silicon wafers. The typical characterization methods such as SEM, TEM, and AFM are unable to directly study the optical properties of systems or follow dynamic events in real-time compared to optical microscopy techniques.

Solar to Chemical Energy Conversion with Photocatalytic Heterostructures made of Earth Abundant Materials

Cu2ZnSnS4 (CZTS) is one of the most promising materials for solar energy harvesting. Made of highly abundant, widely distributed and relatively biocompatible elements, and with a direct band gap of 1.5 eV, CZTS is an affordable, greener and more sustainable alternative to other semiconductors such as GaAs, CdTe, CuInS2 (CIS), or CuInxGa1-xSe2 (CIGS).

Gschneidner participates in MRS videoconference

Karl Gschneidner Jr., Ames Laboratory's own "Mr. Rare Earths," did an interactive teleconference with materials science and engineering students at the MRS Fall conference on Dec. 2, 2013. Gschneidner participated in the “Exploration of the Impact of Materials on Society” event, which included a short talk on rare earths and their importance to society, an educational activity, and a question and answer session.

Teleconferencing goes 3-D

Nik Karpinsky and Song Zhang have developed 3-D teleconferencing technology that's live, real-time and streaming at 30 frames per second. They say it took a lot of late nights to solve the technical problems associated with image capture, transmission and display. They also say the technology could be ready for smart phones in a few years. Image


Subscribe to The Ames Laboratory RSS