You are here

Boeke goes green

Ames Lab senior research technician Dave Boeke traded in his muscle cars for a Toyota Prius and owns land on which a commercial wind turbine is churning out electricity. Check out his "green" conversion. Image

Understanding the Social Network of Plants

Recent estimates state that the supply of food should increase by 50% in the next 40 years to accommodate the changes in demographics and eating habits. We are at a remarkable juncture where (i) the price of oil and nitrogen-based fertilizers is expected to increase, (ii) the long term availability of phosphorus for fertilizers is in doubt, (iii) the erosion of soil is reducing yields, and (iv) climate change brings extreme weather that impacts crop survival and productivity.

Polymer-like Nanowires

Unique properties (e.g., rubber elasticity, viscoelasticity, folding, reptation) determine the utility of polymer molecules and derive from their morphology (i.e., one-dimensional connectivity and large aspect ratios) and flexibility. Crystals do not display similar properties because they have smaller aspect ratios, they are rigid, and they are often too large and heavy to be colloidally stable. These limitations are not fundamental and they can be overcome by growth processes that mimic polymerization.

Nanomaterials by Design

Materials are the backbone of technology. Whenever a materials displays a new function, it transforms society: biodegradable scaffolds will enable the regeneration of tissues, shape memory alloys enabled stents that repair clogged vessels, superhydrophobic surfaces will prevent ice deposition on surfaces, ultrahard coatings will enable plastic electronics and reduce waste of materials and energy by abating friction and wear.

Biomineralization; Bacteria that build magnets

For a number of animals, including birds, fish and mammals, there is evidence that magnets are used for orientation.  However, little is known about how these organisms build these magnets.  For magnetotactic bacteria we have isolated a protein that will drive the formation of magnetic particles.  We are using this protein to discover how these bacteria produce magnets by the process called biomineralization.  

Interpreting wind tower and turbine data

This project will investigate the relationship between real wind speed data (and potentially power data) collected at wind turbines, and the power estimates provided by models that use estimated wind resource, wake models and turbine power curves to predict power output. Different wake models will be investigated to see if some are more effective at predicting results than others. Any variance from real data in the predictions will be traced to the three factors modeled, to see if one plays a larger role than the others.

Pages

Subscribe to The Ames Laboratory RSS