You are here

Forensic Technology Center of Excellence

FWP/Project Description: 


This project is a collaborative effort between the National Forensic Science Technology Center; the National Center for Forensic Science; the National Clearinghouse for Science, Technology, and the Law; Marshall University’s Forensic Science Center; and the Midwest Forensics Resource Center.  The purpose of the project is to facilitate the adoption of new tools and technologies into practice by criminal justice agencies through testing, evaluation, and provision of technology assistance.




National Forensic Science Technology Center



David P. Baldwin


Phone: (515) 294-2069

Advanced Wear-Resistant Nano-composites for Increased Energy Efficiency

FWP/Project Description: 

AlMgB14-based composites are a new class of super-hard materials developed at Ames Laboratory. Initial studies of AlMgB14 composites demonstrate the potential for obtaining a high-wear-resistance material through powder metallurgy processing. However, the approach employed to prepare these composite samples is based on research-scale mechanical alloying and hot pressing. To be used commercially, the composites need production in larger quantities and in a more cost efficient manner.

The goals of this project are to increase operating efficiency and operating lifetime of industrial pumping systems and other wear-intensive industrial components. This is achieved by developing and commercializing a family of ceramic-based composites, that show outstanding wear-resistance in laboratory tests. A major objective of the proposed effort is to develop a cost-effective, industrial-scale processing, and synthesis method for making AlMgB14composites capable of producing bulk materials possessing comparable or even improved wear-resistance properties compared to the research-scale compacts. Optimization of composition and processing on the laboratory scale will serve as an initial milestone, providing industrial processing partners with a "template" for developing their industrial-scale procedures. Emphasis will be placed on examining alternate powder processing techniques, and powder blending and densification methods to eliminate porosity and achieve products exhibiting a maximum combination of hardness and toughness. Successful development of these new wear-resistant composites is expected to result in U.S. energy savings of 31 trillion BTU/year by 2030.

Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

FWP/Project Description: 

This project represents the Ames Laboratory's contribution to a larger, multi-partner research effort led by Eaton Corporation, involving Oak Ridge National Laboratory (ORNL) and Greenleaf Corporation. This collaboration shares an interest in the development of next-generation wear-resistant coatings.

The objective of this project is to develop and commercialize degradation-resistance materials—nano-coatings of AlMgB14 and AlMgB14-TiB2—applicable to a wide range of industrial applications, including hydraulic pumping systems and machine tooling, that reduces friction and wear. Technology resulting from this project is estimated to result in U.S. energy savings of 31 trillion BTU/year by 2030, with associated energy cost savings of $179M/year.

Research performed on this project has shown that AlMgB14-based coatings combine high hardness with a low friction coefficient (0.1 or less under dry conditions and as low as 0.02 in a water-based environment). These coatings can significantly reduce wear on rotating and sliding interfaces and extend the life of cutting tools in lathe turning tests with titanium based alloys by 50% compared with state-of-the-art TiAlN-coated tools. Development and commercialization of these coatings will result in multiple benefits in improved energy efficiency, lower emissions, waste reduction, and higher product quality across a wide range of critical processes in paper processing and manufacturing of chemicals, petrochemicals (plastics), and mining. The project also includes basic research to understand the physics and surface chemistry of the coatings, and ways to achieve further improvements in their performance and durability.

Computational & Experimental Development of Novel High Temperature Alloys

FWP/Project Description: 
Project Leader(s):
Principal Investigators:
Mufit Akinc, Matthew Kramer

The objective of Computational and Experimental Development of Novel High Temperature Alloys is to develop alloys with enhanced high temperature oxidation resistance with robust mechanical properties. To accomplish this objective we utilize a novel multi-stage progressive “sieving process.” At this point in time, the most promising alloys are Ni-based, so the efforts will concentrate specifically on designing oxidation-resistant Ni-based alloys that can operate at temperatures close to 2500°F (~1350°C). While intermetallics, like the Mo-silicides, can withstand oxidative environments at very high temperatures, they have poor mechanical properties that preclude their implementation. On the other hand, Ni-based alloys (especially alumina formers) provide good mechanical strength and oxidation resistance. Since the melting point of Ni is 1455°C, the challenge lies in alloy compositions having significantly higher melting points, while maintaining good microstructural, thermodynamic, and chemical stability at elevated temperatures. Our approach would involve using the Miedema model for initial screening of prospective alloys, followed by more detailed thermodynamic assessments, and experiments on oxidation behavior to focus on these potential alloys.


Subscribe to The Ames Laboratory RSS