Photodissociation of alkyl and aryl iodides and effect of fluorination: Analysis of proposed mechanisms and vertical excitations by spin–orbit ab initio study

TitlePhotodissociation of alkyl and aryl iodides and effect of fluorination: Analysis of proposed mechanisms and vertical excitations by spin–orbit ab initio study
Publication TypeJournal Article
Year of Publication2002
AuthorsDevarajan A, Fedorov DG, Finley JP, Hirao K
Journal TitleJournal of Chemical Physics
Volume117
Issue15
Abstract

An ab initio study of the vertical electronic excitations in CX3I, C6X5H, and C6X5I (X�H and F) is presented. All-electron basis sets are used and the relativistic effects are accounted for with the relativistic elimination of small components scheme. The structures are optimized with the complete active space self-consistent field approach and the excitation energies are computed with the spin–orbit multiconfiguration quasidegenerate perturbation theory. The n–σ∗ transitions of CX3I, low-lying π–π∗ transitions of C6X5H, and low-lying n–σ∗, π–π∗, and π–σ∗ transitions of C6X5I are elucidated. For CH3I, energy values of parallel and perpendicular transitions differ from experimental values by 455 and 1156 cm−1, respectively. Effects of fluorination are emphasized, it is found that fluorination increases the gap between 3Q0 and 1Q1 transitions and increase is substantially more in aryl iodides than in alkyl iodides. Electronic factors influencing increased I∗ quantum yield in the photodissociation on fluorination of alkyl iodides is attributed to increased gap between 3Q0 and 1Q1 transitions reducing curve crossing probability and for aryl iodides there is additional role by phenyl transitions. A correlation diagram illustrating transitions of aryl iodides is presented.

URLhttp://jcp.aip.org/resource/1/jcpsa6/v117/i15/p7068_s1