Structure and Dynamics of the 1-Hydroxyethyl-4-amino-1,2,4-triazolium Nitrate High-Energy Ionic Liquid System

TitleStructure and Dynamics of the 1-Hydroxyethyl-4-amino-1,2,4-triazolium Nitrate High-Energy Ionic Liquid System
Publication TypeJournal Article
Year of Publication2012
AuthorsCarlson PJ, Bose S, Armstrong DW, Hawkins T, Gordon MS, Petrich JW
Journal TitleJournal of Physical Chemistry B
Volume116
Pages503-512
Date Published01
Type of ArticleArticle
ISBN Number1520-6106
Accession NumberWOS:000298978100059
KeywordsBASIS-SETS, complete solvation response, coumarin 153, dielectric friction, electronic-structure, molecular-orbital method, physicochemical properties, rotational-dynamics, spectroscopy, theoretical investigations
Abstract

An investigation of the structure and dynamics of the high-energy ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN), was undertaken. Both experimental and computational methods were employed to understand the fundamental properties, characteristics, and behavior of HEATN. The charge separation, according to the electrostatic potential derived charges, was assessed. The MP2 (second-order perturbation theory) geometry optimizations find six dimer and five tetramer structures and allow one to see the significant highly hydrogen bonded network predicted within the HEATN system. Due to the prohibitive scaling of ab initio methods, the fragment molecular orbital (FMO) method was employed and assessed for feasibility with highly energetic ionic liquids using HEATN as a model system. The FMO method was found to adequately treat the HEATN ionic liquid system as evidenced by the small relative error obtained. The experimental studies involved the investigation of the solvation dynamics of the HEATN system via the coumarin 153 (C153) probe at five different temperatures. The rotational dynamics through the HEATN liquid were also measured using C153. Comparisons with previously studied imidazolium and phosphonium ionic liquids show surprising similarity. To the authors' knowledge, this is the first experimental study of solvation dynamics in a triazolium-based ionic liquid.

URL<Go to ISI>://WOS:000298978100059
DOI10.1021/jp207840q
Alternate JournalJ. Phys. Chem. B