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Rare Earth Prices compared to Gold & Silver
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Dilbert, February 28, 20

OUR CONSULTANT WILL
TELL US HOW WE CAN
SECURE A LONG—TERM
SUPPLY OF RARE EARTH
METALS FOR OUR
PRODUCTS.
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CHINA HAS MOST OF
THE RARE EARTH
METALS. TRY DYING.
AND REINCARNATING.
THERE'S A 20% CHANCE
THAT YOU'LL BE BORN
CHINESE.

22811 ©2011 Scott Adams, Inc./Dist. by UFS, Inc.
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The hottest new literary sub-genre?
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Annual Average Cobalt Prices
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Critical Materials are Not New

, * “The stone age did not end because we ran
P out of stones” — Steven Chu.

* The copper age replaced the stone age
because copper was better for some things.

« The bronze age replaced the copper age
because bronze was better than copper.

« But the bronze age was not replaced by the
Iron age. It ended because copper became
unavailable.
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The Bronze Age Collapse

~1200 BC

 Bronze becomes unavailable

— Possibly because Cyprus is overtaken by war,
making copper inaccessible.

« Responses include
- Recycling
— Source Diversification
— Materials Substitution

* Results
— Collapse of trade; collapse of civilization

— Strengthening of Egypt, which found alternative sources in Africa
— Eventual emergence of the iron age

(\CM | | Critical Materials Institute



Paul Ehrlich Julian Simon

The Ehrlich-Simon Bet
1980

* Paul Ehrlich (prof. of Population Studies at Stanford University)

— Metal prices will be higher in 10 years because of ever-increasing demand driven
by relentless population growth.

 Julian Simon (prof. of Business Administration at the U. of Maryland)

— Prices will be lower because technology will make the extraction of the metals
cheaper, or we will find alternatives for those that are really running out.

(CM
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Who won?

 Ehrlich and his colleagues selected a $1000 “market basket” comprising
$200-worth of each of five different metals, at 1980 prices.

Comeodty
ssex ¥ Chromium
I Copper
$50K B Nickel
M Tin
$45K § Tungsten
$40K
$3I5K
$30K
$25K
$20K
$15K
S$10K /\/_//\/\
$5K _ e
$O0K
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

* In 1990, Ehrlich gave Simon a check for $576.07, representing the decline in
value of the basket.
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Long-term trends

I Metal detector

The Economist industrial commodity-price index, real* $ terms, 1845-50=100

1845 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2011
-50
Sources: The Economist; Thomson Reuters *Adjusted by US GOP deflator
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Is there a "hockey-stick™ effect?

MGI Commodity Price Index (years 1999-2001 = 100)’
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Is there a "hockey-stick™ effect?

Major Price Indices
(Indices of Nominal USS Prices (2000=100))
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Middle class growth

9,000

7,000

)
fa)
o
S
=

OECD expects the &
world’s middle class £5.000 1
to grow - 24,000 _
from1.8 billion g

) £ 3.000 -
people, in 2012, APcor

. . 2,000 EMiddle Class
to 4.9 billion in 2030.

1,000 mRich

O & & & © O O X o & N A
S & &P PO oL
S S S S S S S S S S S

I ('s) D Q
¥ 4 G o]
o @ P

Source: Wolfensohn Center for Development, at Brookings

(\CM | Critical Materials Institute

AN ENERGY INNOVATION HUB 15




Materials criticality Is affecting us today

EEUQORESCENTIPAM PATAYIPE SIEOMPARED

* The target date for transition to high-output
T5 fluorescent lamps has been delayed by
two years because manufacturers claim
that there is a shortage of Eu and Tb for the
phosphors.

« Utility-scale wind turbine installations are
overwhelmingly gearbox-driven units,
despite the high failure-rate of the
gearboxes, because of the cost and
unavailability of Nd and Dy required for
direct-drive units.

(CM
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Most solutions take effect “tomorrow”

« Mine development, where there is a known resource, takes
at least 10 years.

« Deployment of substitute materials, when there is an existing
option, takes an average of 4 years.

* Development and deployment of new substitute materials
takes an average of 18 years.

Critical Materials Institute
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The Mission of CMI

Eliminate materials criticality

as an impediment to the
commercialization

of clean energy technologies §
for today and tomorrow.

Critical Materials Institute
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Four CMI Outcomes

« Materials supply chains assured for
clean energy manufacturing in the US

— Current critical materials issues solved

— Future criticality issues identified and
averted

» Supplies of technical talent and
expertise assured

* Critical materials information provided
to researchers, producers & OEMs

* Federal critical materials research
efforts coordinated for maximum
Impact

Critical Materials Institute
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Three-D Approach

* Diversify supply

* Develop substitutes

* Drive reuse, recycling, and efficient use

of materials in manufacturing

Essentially following DOE’s Critical Materials
Strategy, but applying it very selectively

Medium Term Outlooks:
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2015 - 2025

Importance to clean energy

DEPARTIAENT OF ENE

Crltlcal Materials
Strategy
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Two Guiding Principles

* Produce more  Use less

« We have to address the entire materials lifecycle, going from
birth through death, and beyond, to include resurrection.

(CM
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One Integrated Team

University of
California, Davis

Idaho National
Laboratory

7 Simbol
Materials, Inc.

@
D

SpinTek
Filtration

“ Molycorp, Inc.
I Mountain Pass Mine
| Lawrence Livermore

National Laboratory

‘ National Laboratory and Academic Partners
© Industrial Partners
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Molycorp, Inc.]

Colorado Schol
of Mines

lowa State
University

The Ames
Laboratory

|

Oak Ridge National
Laboratory

Florida Industrial and
Phosphate Research
Institute

[ Purdue University

General Electric
Phosphor Lighting

7| General Electric
l Global Research

I Rutgers

(<R

| Brown University

| Cytec Industries, Inc.
| R&D facility

i General Electric
1 Company

Cytec Industries, Inc.
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] Cytec Industries, Inc.

ﬂ OLI Systems, Inc.

N Advanced Recovery, Inc.
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CMI Project Selection and Design
« CMI addresses 7 critical or near-critical chemical elements.

35 initial projects, selected for several criteria

— Potential for impact at a key point in the materials lifecycle, in a
realistic timeframe.

— Integration of strengths and capabilities across the Hub. (No project is
carried out by a single partner institution.)

— Clear path to deployment. Commercialization plan in place on day
one.

— Annual evaluation addresses continued adherence to the timeline and
each of the above criteria.

 As the world changes, we expect to terminate projects and
start new ones.
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Neodymium

« Used for high-performance magnets

 Traditional uses:
— Hard disk drive spindle motors
— Portable electronics - loudspeakers & microphones
— Small motors in vehicles

 Emerging uses:
— Traction motors in electric vehicles
— Wind turbine generators

((CMI | Griical aterals nsitue




Classical Froth Flotation

« Separates valuable ore from the associated gangue.
« Concentrates bastnaesite, but not monazite.

* Monazite contains more of the higher-value heavy rare
earths, but currently goes to the tailings heap.
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Quantum Froth Flotation

» Solution: find collector molecules that bind monazite to air
bubbles.

« Quantum chemistry computations at Ames and Oak Ridge.
* Pilot-scale testing at Idaho.

g Molecular fragments )
. = defining desired ,
» US-based chemical manufacturers. geometiofeatires |
o " Fragment
Deployment to US mines. | S Ganerati: [ 80
\\/ PIEN 8
W’ b e X
2| ustotopimal | <<
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Refin\e'd List 5
of Optimal ' go
Candidates
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REESs in the Phosphate Deposits of the Tethys

« Average of 300 ppm REE

e Contains 2.7x107 tons of
REE resources

* Represents ~200 years of
current world demand
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Phosphate Production

About 220 million tonnes of phosphate rock is processed annually, worldwide,
(USGS, 2013)

- China — 89 million MT

- United States — 29 million MT

- Morocco and Western Sahara — 28 million MT

- Russia — 11 million MT

* Primary use is for agricultural fertilizers

* The large-scale processes are attractive for recovery of other valuable
materials

- mining and significant portion of processing infrastructure exist, and costs are borne by current economical
processes

« Uranium concentration in phosphate rock ranges from 50 to 200 ppm,
averaging greater than 100 ppm

* Rare earths constitute 0.01 to 0.1% of the apatite, averaging 0.05% REO

\
N

e
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REE In Florida Phosphate — recent data
2011 FIPR Characterization Study

REE Distribution in sand flotation tailings

Sc 1%
LREE

51%

similar distribution in
other analyzed streams
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How to win the co-products?
Phosphates offer several options for extracting critical materials

..ﬂt si llfl : Sand talllngs (~10% Of REE) .
c"’* |

ﬂA«‘&‘ A

Phosphate Ore

Waste clay (~40% of REE)

a,oF,(PO,) + 10H,SO, + 10nH,0 — 10CaSO,*nH,O + 6H,PO, + 2HF
i-hydrate process, n = 2; Hemi-hydrate process, n = 1/2; Anhydrite, n=0

Sulfuric
acid

Dissolution

Filtration Phosphogypsum (~38% of REE)

Wet-Process

Phosphoric Acid
(~12% of REE)

Evaporation

Critical Materials Institute

AN ENERGY INNOVATION HUB

Rexl




Addressing the barriers to economic production of REE
from phosphate

Improving Recovery

. 1ro
Sand tailings (~10% of REE) » Concentrate REE-containing material

pEancec Leach REe from flotation tailings by gravity
i i’ Capt ' . . .
Conventional < — sl separation, followed by acid leaching

Beneficiation _ av b
Phosphate ore_ & Advanced Léach i, REE « Concentrate REE in waste clay by
, M Laptife removing clay minerals, followed by
suluriel” 3 Dissolution Waste Clay (~40% of REE) acid leaching

» Modify dihydrate dissolution process
to increase REE fraction in the acid

Filtration =% Phosphogypsum (~38% of REE)

v phase

/— - -
W‘;Z{mess Enhancing Extraction
Phosbhoric Acid

({12% of REE) « Employ synergistic systems to
REE / U / Th co-product enhance REE extraction at high acid
. P— . concentrations
Evaporation Fertilizer Production

* Investigate capabilities of advanced
sorbents and lanthanide-selective
extractants identified through
molecular design

(CMI
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Terbium & Europium

* Provide green and red light emission

 Traditional uses:
- CRTs
— Long-tube fluorescent lamps
— Flat panel color displays and TVs

e Current uses:
— Compact fluorescent lamps
— Personal electronics

e Future uses:

C.LE. 1976 U.C.S.

— LED lighting ; ooy
— OLED displays ;
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Phosphor design
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Substitution efforts address four key areas

Candidate Selection

» Literature & databases

» Classic models: Judd-Ofelt;
Tanabe-Sugano; Crystal field

» Advanced quantum models

Lamp Performance
» Mercury resistance
Water insensitivity
Firing stability
Radiation resistance
Protective coatings
Long-term stability

* Precipitation (e.g. urea)
- « Solid state reaction
* Flame synthesis

New phosphor
meeting all
specifications
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Synthesis
« Combustion

« Vapor doping
* Post-treatments

Ca-Na Phosphate Glass

Characterization
» Emission (CIE)
» Absorption

» Decaytime

* Photo-stability
e Structure

« Composition




Fluorescent lamp recycling

* Long-tube and compact
fluorescent lamps are already
collected for recycling, primarily as
a means of controlling mercury
release into the environment.

 Fluorescent lamps represent about
7% of the total usage of Eu and Th.

« Phosphors, however, are not
typically recycled although they
contain highly valuable Eu and Th.
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Phosphor recycling research agenda

* Veolia collects about 1,200,000 Ibs of phosphor every year.
 This contains 9-12.5% of high-value REO.

« CMI will assess the physical and chemical character of this
phosphor.

* Three different approaches to separating the REO will be

assessed:

— Physical beneficiation
— Hydrometallurgical leaching and precipitation
— Pyrometallurgical processing

* Open Questions:
— Phosphor re-use?
— Phosphor separation by type?

( CMl Critical Materials Institute
\ AN ENERGY INNOVATION HUB



Projected Annual Production of Emerging Mines

tonnes of REO

Separating these
elements is costly, time-
consuming and potentially
highly polluting.

Some ore bodies also
contain radioactive
elements.

Not all of the elements
can be absorbed by the
market.
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Critical Materials Strategy, 2011.
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Potential Annual Revenue, USK$/yr
at April 2008 prices

Not all of this revenue is

realizable, because some 0000 =
m%
elements are overproduced o000 -/,/_—-__i 3 o
relative to demand — notably o a M T/
4~ 7
Ce. 500,000 - _—
400,000 /// B _—

If we succeed in inventing a 300,000+~
substitute for Nd, then its price 2000 +~ -

will drop. This will reduce mine 45000 -~ 48 FP s o

revenues and challenge the . L = ..,.?‘;/ﬁ%.;ns%m

sustainability of supply for other B e pr / stuamamps Bore "
m  Eu

Dubbo Zirconia

rare earths.
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Challenges

(CMI

Incommensurate timescales of criticality development and
research projects

Emergence of alternative solutions
Co-production complications
Lack of predictive tools for supply and demand

Persistent lack of control at key points of the supply chain

Research Is not always the answer!!
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Thank You!

Questions?
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