Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

Personnel

Overview

This project represents the Ames Laboratory's contribution to a larger, multi-partner research effort led by Eaton Corporation, involving Oak Ridge National Laboratory (ORNL) and Greenleaf Corporation. This collaboration shares an interest in the development of next-generation wear-resistant coatings.

The objective of this project is to develop and commercialize degradation-resistance materials—nano-coatings of AlMgB14 and AlMgB14-TiB2—applicable to a wide range of industrial applications, including hydraulic pumping systems and machine tooling, that reduces friction and wear. Technology resulting from this project is estimated to result in U.S. energy savings of 31 trillion BTU/year by 2030, with associated energy cost savings of $179M/year.

Research performed on this project has shown that AlMgB14-based coatings combine high hardness with a low friction coefficient (0.1 or less under dry conditions and as low as 0.02 in a water-based environment). These coatings can significantly reduce wear on rotating and sliding interfaces and extend the life of cutting tools in lathe turning tests with titanium based alloys by 50% compared with state-of-the-art TiAlN-coated tools. Development and commercialization of these coatings will result in multiple benefits in improved energy efficiency, lower emissions, waste reduction, and higher product quality across a wide range of critical processes in paper processing and manufacturing of chemicals, petrochemicals (plastics), and mining. The project also includes basic research to understand the physics and surface chemistry of the coatings, and ways to achieve further improvements in their performance and durability.

Publications

2009
Cook Bruce; Russell Alan; Wilson George . 2009. Wear-Resistant Boride Nanocomposite Coating Exhibits Low Friction. MRS Bulletin. 34:792. abstract
Export: Tagged BibTex