You are here

Advanced Wear-Resistant Nano-composites for Increased Energy Efficiency

AlMgB14-based composites are a new class of super-hard materials developed at Ames Laboratory. Initial studies of AlMgB14 composites demonstrate the potential for obtaining a high-wear-resistance material through powder metallurgy processing. However, the approach employed to prepare these composite samples is based on research-scale mechanical alloying and hot pressing. To be used commercially, the composites need production in larger quantities and in a more cost efficient manner.

The goals of this project are to increase operating efficiency and operating lifetime of industrial pumping systems and other wear-intensive industrial components. This is achieved by developing and commercializing a family of ceramic-based composites, that show outstanding wear-resistance in laboratory tests. A major objective of the proposed effort is to develop a cost-effective, industrial-scale processing, and synthesis method for making AlMgB14composites capable of producing bulk materials possessing comparable or even improved wear-resistance properties compared to the research-scale compacts. Optimization of composition and processing on the laboratory scale will serve as an initial milestone, providing industrial processing partners with a "template" for developing their industrial-scale procedures. Emphasis will be placed on examining alternate powder processing techniques, and powder blending and densification methods to eliminate porosity and achieve products exhibiting a maximum combination of hardness and toughness. Successful development of these new wear-resistant composites is expected to result in U.S. energy savings of 31 trillion BTU/year by 2030.

No Publications