Novel Materials Preparation & Processing Methodologies


Project Leader(s):
Thomas Lograsso

Principal Investigators:
Iver Anderson, Paul Canfield, Lawrence Jones, Thomas Lograsso, R. William McCallum


The growth, control and modification of novel materials in single crystal and polycrystalline form, represent a national core competency that is essential for scientific advancement within and across traditional disciplinary boundaries, and are critical components of the USDOE Basic Energy Sciences' mission. In support of this mission, the Novel Materials Preparation and Processing Methodologies project strengthens the materials synthesis efforts of the Ames Laboratory.

The objectives of Novel Materials Preparation are to quantify and control processing-structure-property relationships: the basic science of how chemical inhomogeneities and structural defects affect properties of highly responsive materials; advance the ability to synthesize and characterize high purity, high quality materials, primarily in single crystal form; develop unique capabilities and processing knowledge in the preparation, purification, and fabrication of metallic elements and alloys.

Our efforts are grouped into three areas:

  1. growth-based activities that have focused on identifying the operating limits for solution growth methods by defining stable growth regimes,
  2. materials-focused investigations of highly responsive materials systems where synthesis challenges often limit the science and where careful control of synthesis structure relations are vital for understanding materials behavior,
  3. development of single crystals facilities that broaden and enhance our growth capabilities to address a wider range of materials.

In addition, the Materials Preparation Center, a specialized research center managed through the BES Synthesis & Processing core research area, provide high-purity, high-quality, and well-characterized materials in support of scientific research programs at the Ames Laboratory the general scientific community.


Previous ImageNext Image


Xing Q; Wu D; Lograsso T A . 2010. Magnetoelasticity of Fe-Si single crystals. Journal of Applied Physics. 107:09a911. abstract
Export: Tagged BibTex

Petculescu G; Mandru A O; Yuhasz W M; Lograsso T A; Wun-Fogle M; Restorff J B; Clark A E; Hathaway K B . 2010. The effect of partial substitution of Ge for Ga on the elastic and magnetoelastic properties of Fe-Ga alloys. Journal of Applied Physics. 107:09a926. abstract
Export: Tagged BibTex

Sato Y; Unal B; Lograsso T A; Thiel P A; Schmid A K; Duden T; Bartelt N C; McCarty K F . 2010. Periodic step arrays on the aperiodic i-Al-Pd-Mn quasicrystal surface at high temperature. Physical Review B. 81:161406. abstract
Export: Tagged BibTex

Wong T; Suzuki K; Gibson M; Ishikawa K; Aoki K; Jones L L . 2010. Hydrogen permeation behavior of multifilamentary Cu-Nb superconducting composites. Scripta Materialia. 62:582-585. abstract
Export: Tagged BibTex

Yuhasz W M; Schlagel D L; Xing Q; McCallum R W; Lograsso T A . 2010. Metastability of ferromagnetic Ni-Mn-Sn Heusler alloys. Journal of Alloys and Compounds. 492:681-684. abstract
Export: Tagged BibTex

Canfield P C; Caudle M L; Ho C S; Kreyssig A; Nandi S; Kim M G; Lin X; Kracher A; Dennis K W; McCallum R W; Goldman A I . 2010. Solution growth of a binary icosahedral quasicrystal of Sc12Zn88. Physical Review B. 81:020201. abstract
Export: Tagged BibTex

Zou M; Pecharsky V K; Gschneidner K A; Schlagel D L; Lograsso T A . 2009. Spontaneous generation of voltage in the magnetocaloric compound Tb5Si2.2Ge1.8 and elemental Gd. Journal of Alloys and Compounds. 488:550-553. abstract
Export: Tagged BibTex

Zhou J S; Goodenough J B; Yan J Q; Cheng J G; Matsubayashi K; Uwatoko Y; Ren Y . 2009. Orbital hybridization in RVO3 perovskites: A high-pressure study. Physical Review B. 80:224422. abstract
Export: Tagged BibTex

Yan J Q; Nandi S; Zarestky J L; Tian W; Kreyssig A; Jensen B; Kracher A; Dennis K W; McQueeney R J; Goldman A I; McCallum R W; Lograsso T A . 2009. Flux growth at ambient pressure of millimeter-sized single crystals of LaFeAsO, LaFeAsO1-xFx, and LaFe1-xCoxAsO. Applied Physics Letters. 95:222504. abstract
Export: Tagged BibTex

Chernyshov A S; Mudryk Y; Paudyal D; Pecharsky V K; Gschneidner K A; Schlagel D L; Lograsso T A . 2009. Magnetostructural transition in Gd5Sb0.5Ge3.5. Physical Review B. 80:184416. abstract
Export: Tagged BibTex