Magnetic Nanosystems: Making, Measuring, Modeling and Manipulation


Project Leader(s):
Ruslan Prozorov

Principal Investigators:
Viatcheslav Dobrovitski, Bruce Harmon, Myron Hupalo, David Johnston, Marshall Luban, Ruslan Prozorov, Michael Tringides, David Vaknin, Jerel Zarestky

Postdoctoral Research Associates:
Kyuil Cho, Wei Tian, Zhihui Wang


This project is designed to meet the challenge of synthesizing and characterizing new magnetic materials whose basic unit is of nanometer size. This Project will expand the coordinated efforts of recent years in the synthesis and characterization of magnetic molecules so as to target a wider array of nanoscale magnetic systems. Strong collaborative ties with scientists at national and international institutions and facilities enhance the Ames effort. In-house experimental facilities probe spin interactions (when necessary down to millikelvin temperatures) by NMR, fast optics, x-ray, susceptibility, and neutron scattering techniques. This project also includes a strong theory component using analytical methods, classical and quantum simulation tools, and first-principles electronic structure methods.

Subtasks in this project are:

  • Magnetic molecules. An established centerpiece of this entire Project is the study of single crystals composed of nanometer-size magnetic molecules. In future work we will manipulate the synthesis process so as to systematically track the emergence of cooperative, macroscopic magnetic phenomena in 1, 2, and 3 dimensions for a matrix of nano-size building blocks. We will also expand our study of quasi-one-dimensional (1D) and 2D magnets, where the magnetic entities have a nanoscale dimension in two and one dimensions, respectively. The above systems include magnetic geometries leading to spin frustration, a novel state of matter. (M. Luban, Y. Furukawa, D. Johnston, R. Prozorov, V. Dobrovitski, D. Vaknin, J. Zaretsky, B. Harmon). Formal collaborations exist with Paul Koegerler (Jülich) and Christian Schröder (Bielefeld)
  • Single and few spin systems. Investigations of single-spin and few-spin quantum dynamics, in such nanostructures as quantum dots and spin impurity centers in crystals, will help to understand the environmental interactions affecting spin systems and will lead to ways for controlling and suppressing the decoherence of spins in nanostructures. Powerful and accurate numerical techniques, together with modern analytical approaches will be used. Experimentally, fast optical probes will be used to detect and coherently manipulate spin coherence, and assess and control relaxation. Advanced spin resonance techniques will also be employed. (V. Dobrovitski, B. Harmon, Y. Furukawa)
  • Magnetic nanostructures on surfaces. This subtask will use a different approach for self-assembly and the creation of nanoscale spin systems. Magnetic species will be deposited on graphene (for optimal mobility and limited chemical activity), and island formation monitored. Magnetic STM tips will be used to probe the magnetism distribution on the island, and fast probe optical Kerr effects will explore the dynamics. Spin polarized first principles electronic structure calculations will be used to investigate the quantum size effect and magnetic response. (M. Tringides, M. Hupalo, C.-Z. Wang)


Previous ImageNext Image


Lee Y; Harmon B N . 2013. Rhombohedral distortion effects on electronic structure of LaCoO3. Journal of Applied Physics. 113:17e145. abstract
Export: Tagged BibTex

Hou Y; Fang X K; Kwon K D; Criscenti L J; Davis D; Lambert T; Nyman M . 2013. Computational and Experimental Characterization of a Cagelike Fe15 Polycation. European Journal of Inorganic Chemistry. :1780-1787. abstract
Export: Tagged BibTex

Dobrovitski V V; Fuchs G D; Falk A L; Santori C; Awschalom D D; Langer J S . 2013. Quantum Control over Single Spins in Diamond. Annual Review of Condensed Matter Physics, Vol 4. 4:23-50. abstract
Export: Tagged BibTex

Dhaka R S; Hahn S E; Razzoli E; Jiang R; Shi M; Harmon B N; Thaler A; Bud'ko S L; Canfield P C; Kaminski A . 2013. Unusual Temperature Dependence of Band Dispersion in Ba(Fe1-xRux)(2)As-2 and its Consequences for Antiferromagnetic Ordering. Physical Review Letters. 110:067002. abstract
Export: Tagged BibTex

Haso F; Fang X K; Yin P C; Li D; Ross J L; Liu T B . 2013. The self-assembly of a macroion with anisotropic surface charge density distribution. Chemical Communications. 49:609-611. abstract
Export: Tagged BibTex

Medling S; Lee Y; Zheng H; Mitchell J F; Freeland J W; Harmon B N; Bridges F . 2012. Evolution of Magnetic Oxygen States in Sr-Doped LaCoO3. Physical Review Letters. 109:157204. abstract
Export: Tagged BibTex

Casadei C M; Bordonali L; Furukawa Y; Borsa F; Garlatti E; Lascialfari A; Carretta S; Sanna S; Timco G; Winpenny R . 2012. Local spin density in the Cr7Ni antiferromagnetic molecular ring and Cr-53-NMR. Journal of Physics-Condensed Matter. 24:406002. abstract
Export: Tagged BibTex

Fang X K; McCallum K; Pratt H D; Anderson T M; Dennis K; Luban M . 2012. A co-crystal of polyoxometalates exhibiting single-molecule magnet behavior: the structural origin of a large magnetic anisotropy. Dalton Transactions. 41:9867-9870. abstract
Export: Tagged BibTex

Liu X J; Hupalo M; Wang C Z; Lu W C; Thiel P A; Ho K M; Tringides M C . 2012. Growth morphology and thermal stability of metal islands on graphene. Physical Review B. 86:081414. abstract
Export: Tagged BibTex

Johnston D C . 2012. Magnetic Susceptibility of Collinear and Noncollinear Heisenberg Antiferromagnets. Physical Review Letters. 109:077201. abstract
Export: Tagged BibTex