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Chapter 1

INTRODUCTION TO
STEGANOGRAPHY AND
STEGANALYSIS

Steganography is the practice of communicating a hidden message in such a way that no one, apart from the
sender and intended recipient, suspects the existence of the message. The goal of steganography is to embed
a payload into a cover object to obtain a stego object in such a way that the presence of hidden information
cannot be detected by either perceptual or statistical analysis of the stego object. The counterpart of
steganography is steganalysis. The main goal of steganalysis is to identify whether a given object has a
payload embedded in it. Other information about the payload is often sought, including identification of
the steganography algorithm, estimation of payload length, recovery of the payload, or obliteration of the
payload. If there exists an algorithm that can determine whether or not a given image contains a secret
message with a success rate better than random guessing, the steganographic scheme is considered to be
broken. A more detailed introduction to steganography and steganalysis can be found in [10, 14, 21] .

Steganalysis can be broadly classified into two categories: passive or active. Passive steganalysis is
concerned with detecting the presence or absence of hidden messages in a stego signal and identifying the stego
embedding algorithm. On the other hand, active steganalysis addresses further issues such as estimating the
embedded message length, locating the hidden message, finding the secret key used in embedding, identifying
some parameters of the stego embedding algorithm, or extracting the hidden message itself, which is often
the ultimate goal. Attacking steganography can also be classified as targeted and blind steganalysis. In
targeted steganalysis, known embedding signatures, such as characteristic histogram shapes, are exploited
to create specific feature values that can distinguish between stego and cover images. Blind steganalysis
uses a set of generic feature values that model image statistics so as to distinguish between cover and stego
images. Blind methods can be used on a variety of steganographic algorithms and do not target a specific
algorithm. Recent advances in steganalysis allow for some blind detection algorithms to be almost as accurate
as targeted detection algorithms.

With the advent of digital media and the Internet, multimedia objects such as still images and videos have
become popular and are shared easily. Image and video data make a good choice for hiding payload. These
objects are readily available and their broad presence on the Internet makes it difficult to check each one for
hidden payload and thus difficult to detect the use of steganography. A single image can hold a reasonable
amount of information, and a video file can hold more. In addition, there is a plethora of freeware available
for hiding secret information, as can be seen by visiting the site stegoarchive.com [6]. MSU StegoVideo
is a public video steganographic tool; see [7]. In this research, we restrict steganalysis of image data to
Joint Photographic Experts Group (JPEG) format because of its wide use in consumer cameras and on
the Internet. It also has the advantage of low bandwidth for storage and transmission, unlike raw or other
uncompressed formats.
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Our objective is to develop a passive blind steganalysis system which offers increased potential for classi-
fying unknown embedding algorithms. Blind JPEG image steganalysis is generally addressed by representing
an image with lower-dimensional features such as statistical properties, and then training a classifier on the
feature set to differentiate between an innocent and stego image. To tackle this problem, we first analyze
existing state-of-the-art steganalysis systems. In Chapter 2, we presents a filter-type feature selection algo-
rithm that selects a reduced feature set using the Mahalanobis distance measure. It provides one solution to
the problem of computational complexity, without loss of accuracy in detection. The experiment is applied
to a well-known JPEG steganalyzer, and shows that using our approach, a reduced-feature steganalyzer can
be obtained that performs as well as the original steganalyzer. This further helps us to understand which
features are most useful for steganalysis. A manuscript describing the reduced feature steganalyzer has been
accepted to the SPIE Media Forensics and Security XII, 2010 in San Jose, USA and Dr. Jennifer Davidson
will be presenting the results at the conference.

In Chapter 3, we propose a new modeling technique by developing a Partially Ordered Markov Model
(POMM) to characterize JPEG images. Our rationale to do so is based on our experimental observation from
Chapter 2, which shows that the Markov based features used by [53] contribute significantly to the detection
process. A POMM generalizes the concept of local neighborhood directionality by using a partial order
underlying the pixel locations. It has been shown that this property results in a computational advantage
of POMMS over Markov Random Fields (MRF) in two ways [40]: whenever the normalizing constant needs
to be calculated, such as in determining the joint probability distribution function (pdf), the joint pdf of a
POMM is available in closed form; and the normalizing constant for a POMM is always known and equal to
the value one [23]. We also show that our steganalyzer can beat state-of-the-art on four different databases,
namely BOWS2 [66], Camera, Corel and NRCS [24] with more than 20,000 images.

In Chapter 4, we present Canvass, a software package that has been developed in Java to make this
research accessible to the Iowa Department of Criminal Investigation forensic lab.

The rest of the chapter is as follows. We discuss the nature of JPEG images since we restrict steganalysis
to JPEG images, and provide necessary details to the reader concerning the JPEG format. We then introduce
a simple case of steganography in JPEG images followed by a popular steganographic algorithm, which we
use later to test our proposed steganalyzer. We end this chapter by a small discussion on state-of-the art
steganalyzers, some of which are used for comparison with the proposed steganalyzer.

1.1 JPEG Image Format

A digital image can be viewed as a spatial, multivariate array of pixels (picture elements). Suppose a generic
pixel location is written as s, a vector in R

2. The quantity g(s) denotes the pixel value, such as the intensity
of radiation in a band of the electromagnetic spectrum, at pixel location s. Then we write an image as

g ≡ {g(s) : s ∈ D}

where D is the index set of pixel locations. This set is typically finite with regular spacing, so that, without
loss of generality, we assume

D = {(x, y) : x = 1, ..., M ; y = 1, ..., N}

Thus, an image is an MxN rectangular array of pixel values. In an 8 bit image, g(s) ∈ {0, 1, ..., 255}. The
Joint Photographic Experts Group (JPEG) format stores image data in a lossy compressed state as quantized
frequency coefficients. Image files that employ JPEG compression are commonly called ”JPEG files”. Figure
1.1 shows the compressing steps performed. The JPEG compressor first partitions the uncompressed image
into sets of 8 by 8 pixels. The discrete cosine transformation (DCT) transforms the 8x8 spatial brightness
values into 8x8 frequency coefficients (real numbers) as follows:

Gu,v = α(u)α(v)
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where u is the horizontal spatial frequency, for the integers 0 ≤ u ≤ 7; v is the vertical spatial frequency, for
the integers 0 ≤ v ≤ 7; gx,y is the spatial pixel value at coordinates (x, y); Gu,v is the DCT coefficient at
coordinates (u, v) and α is a normalizing function given as

α(n) =







√

1
8 if n = 0,

√

2
8 otherwise.

After applying the DCT, a quality matrix Q is used to quantize the frequency coefficients to integers in the
range -1024 to 1023. This step loses information. The quantized DCT coefficients are computed as

Bj,k = round

(

Gj,k

Qj,k

)

where 0 ≤ j, k ≤ 7 and B is the set of quantized DCT coefficients. After lossy quantization, the Huffman
coding ensures the lossless coding of the quantized coefficients. A more detailed description of the JPEG
compression can be found in [11].

Figure 1.1: JPEG compression steps

Note that the correlations among DCT coefficients can be exploited in two following ways:

• Intra block correlations: It capture correlations that occur with each 8x8 block of quantized DCT
coefficients.

• Inter block correlations: It capture correlations that occur between DCT coefficients in different
blocks but the same (or close to the same) relative positions.

1.2 JPEG Steganographic Algorithms

A steganography algorithm embeds a payload into a cover object in such a way that the presence of hidden
information cannot be detected by either perceptual or statistical analysis of the stego object. A payload
consists of a vector of uniformly randomly generated bits 0 and 1, representing an encrypted bitstream. A
JPEG steganography algorithm embeds payload by changing the quantized DCT coefficient values B. The
most popular, frequently used and easy to implement steganographic method is the Least Significant Bit
(LSB) steganography. The LSB steganographic methods can be classified into the following two categories:
LSB replacement; and LSB matching, also called plus/minus one embedding [49]. The LSB replacement
method works by replacing the least significant bit of a DCT coefficient value with the payload bit. In
LSB matching, a coefficient value is modified as needed by increasing or decreasing the base 10 coefficients
randomly to match the payload bit. If the bit must change, a value of +1 or -1 is added randomly to make
the DCT bit value match that of the payload’s. This seemingly innocent modification of the LSB embedding
is significantly harder to detect, because changed pixel values are no longer paired as in LSB replacement.

Jsteg [4] is probably the first steganographic tool to embed in JPEG images. It was developed by Derek
Upham in 1993. This hiding algorithm embeds a payload bit by replacing the LSB of the quantized DCT
coefficients and skipping all those coefficients whose value is 0 or 1. It can embed data roughly 12% of file
size of cover image, and embedding is performed in a sequential order on the coefficients.
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OutGuess [54] was developed by Neil Provos in 2001. The algorithm identifies redundant coefficients
that have the least effect on the cover image and modifies them if necessary during embedding of message
bit using LSB replacement. For each bit changed due to payload embedding, the algorithm changes another
untouched coefficient. The original global histogram of JPEG coefficients is preserved after embedding is
complete. The algorithm voluntarily limits the maximum size of data that can be embedded to 6% of file
size of cover image in order to make the algorithm more robust to statistical analysis.

The F5 [67] steganographic algorithm was introduced by Pfitzmann and Westfeld in 2001. It was de-
veloped from Jsteg in an iterative fashion with each new version being less detectable. It embeds message
bits into randomly chosen DCT coefficients. If the payload is small enough, it uses ”matrix embedding”, an
approach based on coding theory that minimizes the necessary number of changes to embed a message of
certain length. The message length and the number of non-zero non-DC coefficients are used to determine
the best matrix embedding that minimizes the number of modifications of the cover image. For payload
too large for matrix embedding, it decrements the absolute value of DCT coefficients if LSB of the DCT
coefficient and payload bit does not match. The author claims that its maximum steganographic content
size is roughly 13% of size of cover image.

Steghide [2] uses a graph-theoretic approach to steganography. At first, the secret message is compressed
and encrypted into the payload bitstream having n bits. Then a random site visitation sequence is generated
in the DCT domain. The n quantized DCT coefficient values (cover values) from those locations are listed,
and paired with payload bits. The pixel locations (ui, vi) 1 ≤ i ≤ n for each cover value are retained along
with the coefficient value. For each payload bit i, 1 ≤ i ≤ n, the corresponding cover value bit is inspected. If
the payload bit value matches the corresponding cover value bit, then nothing is done. If payload bit i does
not match the corresponding cover bit, then a graph-theoretic search algorithm is used to find a different
cover value, say at position j in the original list of DCT values, whose bit matches the payload bit. The
DCT values at the two sites are switched so that the DCT value at position i with pixel location (ui, vi) is
now at location j (uj , vj) and vice versa, and the bit values of the newly located cover values now match
with the corresponding payload bits at each location i and j in the payload list. This is done for all such
possible pairs until all the payload bits match with switched cover bits, or until it is not possible to make
any more exchanges. If there are any remaining payload bits not embedded, that is, not having bits that
correspond to the cover value bits in the list, then those remaining cover value bits are used to embed those
payload bits by LSB replacement (overwritten).

JPHide [3] uses DCT coefficients based on a fixed table such that coefficients with higher numerical value
are selected first. All coefficients in the current class are used first to hide the information before the next
class is chosed. The data hiding process continues in the current coefficient class even after the complete
message has been hidden. A pseudo-random number generator determines if coefficients are skipped. The
probability of skipping bits depends on the length of the hidden message and how many bits have been
embedded already. An interesting property of JPHide is that it not only modifies the least-significant bits
of the DCT coefficients, it can also switch to a mode where the second-least-significant bits are modified.

1.3 Universal JPEG Steganalyzers

Steganalysis can be considered as a two-class pattern classification problem if the test image needs to be
classified as either a cover image or a stego image. Generally, the classification consists of two parts,
feature extraction and pattern classification. Since image data is typically very large, a lower-dimensional
representation of the information in the image, relative to the classification task at hand, is required. A
feature is such a lower-dimensional representation of the image data and is crucial for many classification
problems, including steganalysis. The best features for steganalysis should contain information about the
changes incurred by data hiding rather than by the content of the image.

Calibration is a well known technique in steganalysis which improves detection accuracy by making
features dependent on the changes incurred by data hiding rather on the image content itself. This was first
introduced by Fridrich in [26]. Calibration is a process used to estimate macroscopic properties of the cover
image from the stego image. During calibration, the stego JPEG image Is is decompressed to the spatial
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domain, cropped by few pixels in both directions, and compressed again with the same quality matrix
as the stego image. It is assumed that the newly obtained JPEG image has most macroscopic features
similar to the original cover image. This is because the cropped image is visually similar to the original
image. Moreover, the cropping brings the 8x8 DCT grid ”out of sync” with the previous compression, which
effectively suppresses the influence of previous JPEG compression and the embedding changes. We will
see how this technique can be used later in Chapter 3. More information on calibration can be found in
[26, 51, 52, 41].

1.3.1 Support Vector Machine

Once the feature set is fixed, the detection performance will vary based on the pattern classifier used and the
actual feature values. The support vector machines [13] (SVM) are very powerful for two-class classification.
Given a training set of instance-label pairs (xi, yi), i = 1, ..., l where xi ∈ R

n are the feature vectors and
yi ∈ {1,−1} are the two classes, the SVM requires the solution of the following optimization problem:

max
∑

i

αi −
1

2

∑

i,j

αiαjyiyjK(xi,xj)

subject to 0 ≤ αi ≤ C,
∑

i

αiyi = 0.

Here training vectors xi are mapped into a higher (perhaps infinite) dimensional space by the function φ.
Then the SVM finds a linear separating hyperplane with the maximal margin in this higher dimensional
space. C > 0 is the penalty parameter of the error term. Furthermore, K(xi,xj) ≡ φ(xi).φ(xj) is called the
kernel function. Once a SVM has been trained, it can be used to determine the class of an unknown sample
x by computing the sign of

f(x) =

Ns
∑

i=1

αiyiK(si,x) + b

where si are training instances xi (support vectors) with αi > 0 and Ns is the number of support vectors.
In our experiments, we use a SVM with radial basis function (RBF): K(xi,xj) = exp(−γ||xi −xj ||

2), γ > 0.
For a more comprehensive introduction to SVMs, please see [13].

1.3.2 Previous work on related Steganalyzers

In one of the earliest papers to appear on blind steganalysis, Avcibas et al. [12] use image quality measures
(IQM) to detect watermarks. ANOVA is used to pick IQM measures that have greater discriminating power
between watermarked and non-watermarked images in the spatial domain.

A work by Fridrich [26] has clearly been a fundamental contribution to blind JPEG detection. Using
a linear classifier, 23 DCT-based features and a training set of 1600 images, accuracies for correct stego
classification obtained were state-of-the-art at the time. A more recent work of Farid’s [45] describes the
use of various Support Vector Machine (SVMs) and 432+216 = 648 features trained on 32000 images,
with five JPEG embedding algorithms. The authors performed a forward feature selection search to select
individual features ranked by classification accuracy, and constructed (linear) SVMs for the sets of selected
features. Following Fridrich’s and Farid’s works, Shi et al. [61] introduced a JPEG steganalyzer using
Markov transition matrices calculated on four directional differences in neighboring values in the DCT
coefficients. Their steganalyzer used 324 feature values, a polynomial kernel (nonlinear) SVM classifier, and
approximately 7500 training images. Their results show an improvement over both Farid’s and Fridrich’s
features to distinguish between stego and cover image data formatted in jpeg, trained on 800 images. Shi’s
work presented an investigation into the use of each of the four directions individually and how each direction
performs in detection. They concluded that the combination of the four sets of features performs better than
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each set individually, and did not reduce the number of features in the model. In Pevný et al.’s more recent
work [53], the authors combine the four Markov feature sets into one set by averaging the four values at a
location, producing 81 instead of 324 feature values, a reduction in the number of Markov feature values.
They add the 81 to an extended set of 193 DCT features, producing a total feature set of 274 values. This set
of feature values produces an improvement in classification accuracy over Shi’s Markov model. Later on in
2008, Chen and Shi[18] extended the steganalyzer in [61] to 486 features by computing transition probability
matrices for each difference JPEG 2-D array to utilize the intrablock correlation, and ”averaged” transition
probability matrices for those difference mode 2-D arrays to utilize interblock correlation. Although this
steganalyzer is an improvement over preceding ones, we believe that a better accuracy rate can be achieved.
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Chapter 2

FEATURE SELECTION FOR
STEGANALYSIS USING THE
MAHALANOBIS DISTANCE

As mentioned in Section 1.3, blind JPEG image steganalysis is generally addressed by representing an image
with lower-dimensional features such as statistical properties, and then training a classifier on the feature
set to differentiate cover and stego image. Many successful steganalysis algorithms use a large number of
features relative to the size of the training set and suffer from a ”curse of dimensionality”: large number of
feature values relative to training data size. High dimensionality of the feature space can reduce classification
accuracy, obscure important features for classification, and increase computational complexity. This chapter
presents a filter-type feature selection algorithm that selects reduced feature sets using the Mahalanobis
distance measure, and develops classifiers from the sets.

We show that it is possible to build a classifier having many fewer features than the full suite of features,
and that these lower-dimensional classifiers have performance results very comparable to that of the classifier
with all features. This also gives an indication about the features which are better for the purpose of
steganalysis.

2.1 General Feature Reduction Techniques

Computationally intensive, analysis for steganography content requires many hours and even days of process-
ing image data to develop a reliable classifier. If a smaller subset of the features can be selected to represent
the intrinsic dimensionality [34] of the data at its full dimension, then it may be possible to develop a
classifier that is as effective as the one with all features, with less computation time and complexity.

There are two basic approaches to feature reduction or feature selection: filter approaches and wrapper
approaches. A filter method provides a reduced feature set by ranking the feature values independently
of the classifier, while a wrapper method uses a classifier to assess the effectiveness of the feature subset
chosen. As such, wrapper methods are typically dependent on the type of classifier used, such as artificial
neural network or support vector machine, and a classifier is developed with each choice of subset chosen.
Filter methods tend to be much quicker than wrapper methods. A disadvantage of filter methods is that
because of their independence from the classifier, it is not known how the selected subset will perform until
a classifier is built. However, with fewer features it may be possible to develop several classifiers from which
a satisfactory one can be picked.

Feature selection methods can be divided further into two categories, univariate and multivariate. Uni-
variate methods examine features individually to determine discriminating power, while multivariate methods
examine groups of feature values. Multivariate methods allow correlations and dependencies between features
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to be accounted for, while univariate methods do not. Univariate methods applied to steganalysis include the
Bhattacharyya distance [64, 63, 69, 44]. There appear to be no attempts to use the Bhattacharyya distance
in a multivariate environment for steganalysis as of this time. Multivariate feature selection methods used
in steganalysis include principal components analysis (PCA) [58, 43], although there are known limitations
to PCA. The Mahalanobis distance measure along with an empirically determined threshold value was used
in [30] for classification of feature values (Center of Mass, COM), and not for feature reduction.

The availability of statistical information from the data guides the selection of distance measure. The
Bhattacharyya distance measure can be used if the probability density functions for the classes are known.
Let p0(x) be the probability distribution for one class and p1(x) be the probability distribution for the second
class. Then the Bhattacharyya distance between the two classes is defined as

B(p0, p1) = −log

∫

√

(p0(x)p1(x)dx. (2.1)

In theory, the Bhattacharyya distance gives upper and lower bounds of the Bayes error [25], although in
practice the bounds are often not tight enough. While this univariate filter-approach is straightforward to
compute for image feature data, it does not take into consideration other information, such as mean or
variance values.

PCA can be used for feature reduction. It provides the optimal solution to the linear projection problem
of feature reduction when using the least mean square measure of error. The general goal of using PCA is
to provide a representation of the data that is de-correlated, where second-order dependencies are removed.
It can also be used to reduce the number of feature variables necessary for classification. PCA has been
useful in reducing the thousands of variables in microarray data [50] to a manageable amount. PCA ranks
features according to the variance of features in a transformed and uncorrelated feature space described by
the singular value decomposition [62]. If the data has higher order dependencies or nonlinear dependencies,
then PCA will be insufficient in revealing all the structure in the data. Because PCA simply ranks the
feature variables according to the variance of the data, PCA may or may not provide an adequate clustering
of the data classes. Selecting features according to largest eigenvalue ranking given by principal component
analysis can be suboptimal [17, 15], including for steganalysis [43, 69].

If estimates of the population mean values, variances, and covariance matrix are available from the data
as is often the case in steganalysis, then the Mahalanobis distance can be used. The Mahalanobis distance
between two classes can be written as

D2 = (µs − µc)′V −1(µs − µc) (2.2)

here expressed for two classes s = stego and c = cover. Here, µs (µc) represents the mean vector for the
stego (cover) population, prime denotes matrix transpose, and V is the covariance matrix.

The Mahalanobis distance has been used in other areas of pattern recognition for several decades, in-
cluding species identification in zoology [59], diagnostic validity in neurology [35], and many other fields. It
is used to provide a measure of similarity between multivariate populations and uses covariance informa-
tion between variables to weight the contributions to the distance. The Euclidean distance, on the other
hand, in essence gives excess weight to variables that are highly correlated and gives additional weight to
variables that have similar information. The Mahalanobis distance gives less weight to those variables that
have high variance and to those variables that have high correlation, so that other feature variables with
lower correlations can contribute to the distance. When correlations between variables are known to exist,
the Mahalanobis distance can offer an advantage for clustering. That is the case for the feature sets under
consideration in this chapter.

2.2 Previous Work on Feature Reduction in Steganalysis

While the work described in Section 1.3.2 shows JPEG steganalysis on how individual features classify (as
in [26]) or linear classification of selected subsets of features (as in [45]), only a few other papers present
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systematic methods for reducing features in JPEG steganalysis and creating comparable classifiers. A filter
approach using the Bhattacharyya distance for steganalysis feature selection was investigated in [69]; however,
the application to steganalysis was very brief, comparing the detection rate on one spatial domain LSB
embedding algorithm only. In [43], the authors describe three wrapper methods for grayscale steganalysis.
In [39], the authors investigate the use of PCA for total variance of the data for spatial domain embedding,
and perform forward and backward feature selection on the 27 features for several databases, comparing
detection accuracies. In [48] , the authors describe a feature selection method for steganalysis on JPEG
images using a K Nearest Neighbor approach, which takes some time to process as it is itself a classifier.
In [47], the authors use a wrapper-type method to reduce the number of features for JPEG steganalysis.
Authors in several papers have chosen fewer feature values so as to make their number of features manageable
in the course of their feature design [19, 33].

With the exception of the grayscale steganalysis research in [32, 43, 39, 45], and the JPEG steganalysis
in [48, 47], none of these ten previous works perform any in-depth investigation into the selection of fewer
features for the express purpose of overcoming the dimensionality limitations. That is the goal of our work in
this chapter. Our work is the first (to our knowledge) use of the Mahalanobis measure for feature selection in
steganalysis. We show how the Mahalanobis distance can be used to provide a good ranking of the features
and maintain accuracy of detection relative to the original full suite of features. The benefits of using
a ranking of feature variables that maintain the ability to classify well with smaller numbers of features
include reduced complexity in both feature dimension and training computation time. This can lead to
improved ability of the classifier to generalize its solution to unseen data. We select support vector machines
for the classifiers, as they are known to offer the potential for generalizable solutions in high-dimensional
feature spaces [34].

2.3 Mahalanobis distance

We now describe the Mahalanobis distance measure. Let Xi be a random variable (r.v.) representing feature
i, and let xc

ij (xs
ij) denote a sample from cover (stego) image i of feature value j. Denote by x̄c

i (x̄s
i ) the

sample mean for feature i for the cover (stego) class, and by vc
jk = 1

N−1

∑N

i=1(x
c
ij − x̄c

j)(x
c
ik − x̄c

k) the sample
covariance between feature j and feature k. The sample covariance values vs

jk are similarly defined for stego
images. Let V c = (vc

jk) denote the cover sample covariance matrix, and V s = (vs
jk) denote the stego sample

covariance matrix. Let p denote the number of features and let N denote the number of training images. In
our particular case, N = 5000 each for cover and stego, and p = 274. After calculating the sample covariance
matrices, we use the pooled covariance matrix to calculate the Mahalanobis distance [46]:

V =
N

2N − 2
V c +

N

2N − 2
V s =

N

2N − 2
(V c + V s). (2.3)

For a set of k ≤ p features, the Mahalanobis distance D2
(k), in quadratic form, between the centroids of those

features is given by:
D2

(k) = (µc − µs)′V −1(µc − µs) (2.4)

where µc = (x̄c
1, x̄

c
2, ..., x̄

c
k)′ and µs = (x̄s

1, x̄
s
2, ..., x̄

s
k)′ represent the vector of sample mean values for the cover

and stego images, respectively, and V −1 is the inverse of the pooled covariance matrix for the k features.
In practice, V may be only positive semi-definite (that is, not full rank) or ill-conditioned. The problem of
inverting V may be regularized by offsetting the diagonal of V and thus creating a positive definite matrix
out of V in the following way. Let ǫ > 0 be a number that is significantly smaller than the average variance
of the class clusters, and write V = QDQ′ as the diagonalization of V by orthogonal matrix Q. The values
of D = diag(λ1, ..., λn) are the eigenvalues for V . By adding ǫI to the matrix V , where I is the identity
matrix, we can solve the problem of inverting V effectively:

V + ǫI = QDQ′ + ǫI = QDQ′ + Q(ǫI)Q′ = Q(D + ǫI)Q′ (2.5)
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Since the eigenvalues in V +ǫI are now strictly positive and ǫ was chosen ”large enough” to avoid ill-posedness,
we let V̂ = V + ǫI replace the covariance matrix V in the calculation of the Mahalanobis distance, Eq. 2.4.
Our value for ǫ is the minimum of the diagonal entries of the pooled covariance matrix V , divided by 10 000.

Note that the Mahalanobis distance gives less weight for features having larger variance and more weight
for features having smaller variance. This can be seen by looking at the one dimensional case (only one
feature), where the Mahalanobis distance is

D2
j =

(x̄c
j − x̄s

j)
2

σ2
j

, j = 1, ..., p (2.6)

where x̄c
j (x̄s

j) are the respective sample means for the j-th cover (stego) feature, and σ2
j = N

2N−2 [
∑N

i=1(x
c
ij −

x̄c
j)

2 +
∑N

i=1(x
s
ij − x̄s

j)
2] is the common variance. In higher dimensions with more than one feature, 1

σ2 is
replaced by the inverse of the (regularized) covariance matrix. A larger Mahalanobis distance value indicates
more class separation when the Mahalanobis distance is used, with a threshold, as a linear classifier.

The Mahalanobis distance can be expressed in terms of principal components, that is, in terms of the
eigenvectors and eigenvalues that are used in principal component analysis. Following a result by [17], the
relation between eigenvalues of the covariance matrix for the feature data and values for the Mahalanobis
distance measure becomes clear. The PCA in this case is performed on the feature data matrix Y consisting
of all mean-centered cover and stego feature vectors vertically concatenated and having dimension 2Nx p.
Let W be the p dimensional covariance matrix for Y : W = Y ′Y . Let D2 denote the Mahalanobis distance
between the two classes c = cover and s = stego where c takes proportion q and s takes proportion 1 − q.
Then for d = µc − µs, the respective mean vectors of length p for the two feature classes, and V in Eq. 2.3,
it can be shown that

W = q(1 − q)dd′ + V (2.7)

D2 = d′V −1d (2.8)

Let P1, P2, ...., Pp (the columns of P ) denote the p eigenvectors of W , with eigenvalues γ1, γ2, ..., γp respec-
tively. Recall the spectral representation of W : W =

∑p

i=1 γiPiP
′

i . For given k ≤ p, let Bk = (P1, P2, ..., Pk)
be a basis and denote D2

(k) as the distance between the clusters using Bk in place of W . Here it is not

assumed that γ1 ≥ γ2 ≥ .... ≥ γp. It has been shown in [17] that

D2
(k) =

∑k

i=1
(P ′

i
d)

2

γi
(

1 − q(1 − q)
∑k

i=1
(P ′

i
d)2

γi

) (2.9)

In particular, for k = 1, for any single feature i,

D2
(1) =

(P ′

i
d)2

γi
(

1 − q(1 − q)
(P ′

i
d)

2

γi

) (2.10)

Eq. 2.9 shows clearly that the maximum value of the Mahalanobis distance for k features may not correspond
to the top principal components corresponding to the largest k eigenvalues.

In short, our use of the Mahalanobis distance is as a (linear) multivariate classifier, where we use a
forward feature selection algorithm to rank features. We then follow by classification using a support vector
machine on increasingly nested subsets of features.

2.4 Description of Experiments

2.4.1 Experiments using UCID Database

For our experimentation, we used the UCID image database [60] which contains a wide variety of natural
images. The UCID database consists of 1338 color images in .tif format of size 512x384 or 384x512. The
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Figure 2.1: Mahalanobi distance graph for univariate and multivariate feature reduction steganalyzer pro-
posed in [61]

images were divided randomly into two disjoint groups. The first group, consisting of 669 images, was used
to create the training examples. The second group contained the remaining 669 images that were used
to generate stego images to test the accuracy of the classifiers. Thus, no image or its different variations
were simultaneously seen by SVM for testing and training, and there were an equal number of images used
for cover and stego. This strict division of images enabled us to estimate the performance on never seen
images from completely different sources. We intentionally chose to generate our cover and stego images
for training and classification in a way to avoid double compression. Recall that a JPEG image is double
compressed when it first compressed using quantization matrix Q1, then uncompressed and recompressed
using quantization matrix Q2, where Q2 6= Q1. This is because double JPEG compression can change the
statistics of DCT coefficients. We generated stego images by embedding data with embedding messages of
length relative to bpc = 0.05, 0.1, 0.2, 0.4. We did not use those stego images for which the steganography
embedding algorithm exited unsuccessfully. We then extracted the features values from the cover and stego
images generated based on the steganalyzer feature set.

Analyzing Markov process based features

In [61], Shi et al. presents a universal steganalyzer based on 324 features calculated directly from the
quantized DCT coefficients. The Markov process is applied to model the magnitude difference of JPEG 2-D
arrays along horizontal, vertical and diagonal directions so as to utilize second-order statistics for steganalysis.
To understand the importance of Markov features, we combine the training files for each steganographic
algorithm (each training file contained 669 cover image and 669 stego images of bpc = 0.05, 0.1, 0.2, 0.4 with
the exception of OutGuess where stego images were generated only with bpc = 0.05, 0.1, 0.2) into one file
which we used our sample space. This results in 3329 cover images and 3329 stego images. We employ
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Mahalanobi’s distance to rank the features and apply two search heuristic to reduce the number of features
and also increase the accuracy at the same time. In first case, we consider each feature individually and
rank them based on their Mahalanobis distance and pick to n features. This is known as Univariate Feature
Reduction. In second case, we employ Mahalanobis distance for Multivariate Feature Reduction. Figure 2.1
plots Mahalanobi distance versus features in univariate and multivariate case.

Table 2.1: Feature Reduction using Univariate Mahalanobis distance for Markov Feature Set

bpc n = ∗ n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

Jsteg

0.05 91.1809 76.6816 77.0553 84.7534 84.006 87.8924 88.4155 89.3871 89.7607
0.1 99.2526 94.0209 94.0209 97.0105 97.9821 96.7862 97.3842 98.1315 98.7294
0.2 99.4768 95.441 94.843 97.6831 98.3558 97.0852 97.6084 98.3558 98.9537
0.4 99.4768 95.2915 94.843 97.4589 98.3558 97.0852 97.6084 98.3558 98.9537

OutGuess
0.05 74.29 65.5456 67.713 69.8057 67.4888 69.0583 68.9836 69.2825 73.8416
0.1 95.8146 84.5291 86.5471 88.7145 89.5366 90.7324 90.8819 91.1061 94.9925
0.2 96.7862 90.8072 92.9746 94.6188 93.5725 94.0209 94.1704 93.9462 96.7115

F5

0.05 59.6413 53.139 53.9611 54.4096 54.1854 53.5874 54.6338 54.4843 55.3812
0.1 73.3931 59.0433 61.9581 61.8087 61.2855 62.9297 63.0045 62.7055 65.7698
0.2 89.0135 78.6996 81.1659 82.3617 81.6143 85.1271 86.3229 86.9208 88.7145
0.4 90.0598 91.5546 90.2093 89.6114 91.0314 91.4798 90.5082 92.8999 92.5262

StegHide

0.05 66.4425 60.5381 60.0149 62.1076 62.1076 63.154 62.5561 62.7803 66.5172
0.1 74.9626 64.7982 64.3498 66.9656 67.1151 69.2078 68.7593 69.6562 74.6637
0.2 86.846 72.571 73.3184 76.9806 78.849 80.3438 80.7922 81.2407 85.7997
0.4 92.1525 82.6607 83.3333 86.9208 88.7892 89.4619 89.3124 89.9103 92.003

JPHS

0.05 50 50.299 49.9253 49.8505 50.0747 49.7758 49.7758 50.0747 50.3737
0.1 51.3453 50.8969 50.9716 51.1958 52.1674 52.2422 51.42 51.2706 51.7937
0.2 86.1734 70.9268 75.1868 77.8027 80.7922 84.9776 85.5755 85.5755 84.8281
0.4 98.3307 85.8506 91.5739 93.7202 92.2099 94.7536 96.3434 96.0254 95.9459

Table 2.2: Feature Reduction using Multivariate Mahalanobis distance for Markov Feature Set

bpc n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

Jsteg

0.05 76.1584 80.7175 82.9596 83.5575 85.6502 87.4439 87.5187 88.1913
0.1 92.7504 95.142 96.562 95.9641 96.1883 98.5052 98.281 97.6831
0.2 94.3946 96.0389 97.0105 96.2631 96.6368 99.1779 98.9537 98.4305
0.4 94.3946 96.1136 97.2347 96.3378 96.7115 99.2526 99.0284 98.5052

OutGuess

0.05 67.8625 68.4604 69.432 73.0194 74.29 73.0942 73.5426 74.9626
0.1 89.6114 92.0777 92.4514 94.1704 94.0209 94.1704 94.1704 95.441
0.2 93.8714 94.6936 94.843 95.7399 95.441 96.2631 95.8894 97.2347

F5

0.05 54.1106 54.858 54.858 55.157 55.7549 55.8296 55.4559 59.7907
0.1 60.9118 64.275 64.8729 66.4425 67.713 68.3109 66.6667 75.5605
0.2 78.9985 87.3692 89.3124 89.0135 90.5082 90.9567 89.8356 91.4051
0.4 89.5366 92.6756 92.3019 92.5262 92.8999 93.7967 92.7504 92.3767

Steghide

0.05 61.0613 63.6024 64.7982 63.8266 65.4709 66.2182 65.8445 67.9372
0.1 66.2182 69.9552 72.272 71.5247 73.2436 73.991 74.29 75.2616
0.2 76.009 82.9596 85.426 84.9776 85.2018 84.8281 86.0987 86.6218
0.4 86.9955 90.8072 91.9283 91.704 91.704 91.1809 91.2556 92.4514

JPHS

0.05 50.0747 50 50.1495 49.9253 49.9253 49.7758 50.1495 49.8505
0.1 51.0463 51.3453 53.5127 53.7369 51.8685 52.3169 52.7653 52.9895
0.2 76.5321 80.0448 84.7534 85.1271 83.9312 84.006 85.1271 84.8281
0.4 93.1638 93.7997 92.1304 91.4944 95.9459 92.8458 93.7997 92.6073
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Figure 2.2: Mahalanobi distance graph for univariate and multivariate feature reduction steganalyzer pro-
posed in [53]

Analyzing Merging Extended DCT and Markov process based features

In [53], Pevný et al. proposes a steganalyzer by extending the 23 DCT feature set [26] and applying calibration
in calculating the Markov features [61]. To understand the importance of Merged features, we combine the
training files for each steganographic algorithm (each training file contained 669 cover image and 669 stego
images of bpc = 0.05, 0.1, 0.2, 0.4 with the exception of OutGuess where stego images were generated only
with bpc = 0.05, 0.1, 0.2) into one file which we used our sample space. This results in 3329 cover images and
3329 stego images. We emply Mahalanobi’s distance to rank the features and apply two search heuristic to
reduce the number of features and also increase the accuracy at the same time. In first case, we consider
each feature individually and rank them based on their Mahalanobis distance and pick to n features. This is
known as Univariate Feature Reduction. In second case, we employ Mahalanobis distance for Multivariate
Feature Reduction. Figure 2.2 plots Mahalanobi distance versus features in univariate and multivariate case.
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Table 2.3: Feature Reduction using Univariate Mahalanobis distance for Merged Feature Set

bpc n = ∗ n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

Jsteg

0.05 96.861 90.8072 95.2167 97.8326 97.3842 96.2631 97.6084 96.1136 97.3842
0.1 99.701 98.281 99.5516 99.701 100 100 100 100 99.8505
0.2 99.701 98.8789 99.5516 99.701 100 100 100 100 99.8505
0.4 99.701 99.0284 99.5516 99.701 100 100 100 100 99.8505

OutGuess
0.05 89.0882 69.7309 83.3333 88.2661 89.7608 89.5366 86.846 91.5546 91.1061
0.1 98.9537 88.0419 96.7115 97.2347 97.2347 97.0105 97.0105 98.5052 98.58
0.2 99.0284 92.4514 96.9357 97.3094 97.2347 97.0105 97.1599 98.5052 98.58

F5

0.05 62.4813 57.1001 60.0149 60.6129 61.0613 60.0149 61.0613 61.5097 62.1076
0.1 83.707 72.272 82.5859 83.1839 81.2407 81.8386 82.8102 83.3333 83.7818
0.2 96.4873 95.142 96.6368 96.861 96.562 95.8894 96.0389 96.3378 95.9641
0.4 96.6368 97.4589 97.6084 97.3842 97.1599 96.4873 96.562 96.7115 96.3378

StegHide

0.05 71.9731 63.154 69.9552 70.3288 69.9552 71.2257 68.6846 72.4963 72.6457
0.1 81.3901 69.133 76.6069 77.8027 77.8027 78.5501 77.5785 82.3617 81.9133
0.2 90.2093 77.2795 85.8744 87.145 86.9208 87.7429 85.5007 89.8356 89.4619
0.4 94.5441 85.5007 89.9103 90.8819 91.3303 92.0777 89.9851 92.1525 92.6756

JPHS

0.05 79.5217 65.5456 83.4081 82.287 81.9133 81.2407 82.4365 81.6891 80.7175
0.1 85.0523 66.4425 85.1271 84.3797 83.8565 83.707 86.3229 85.0523 84.6786
0.2 94.7683 81.8386 92.8999 92.3767 92.3019 91.9283 93.2735 92.8999 94.0209
0.4 97.2973 91.256 96.5819 96.8998 96.7409 96.7409 96.6614 96.8203 97.2973

Table 2.4: Feature Reduction using Multivariate Mahalanobis distance for Merged Feature Set

bpc n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

Jsteg

0.05 92.9746 94.6936 96.1136 97.9821 98.3558 97.6831 97.3094 97.4589
0.1 99.4021 99.2526 99.3274 99.7758 100 100 100 99.9253
0.2 99.4021 99.3274 99.3274 99.7758 100 100 100 99.9253
0.4 99.4021 99.3274 99.3274 99.7758 100 100 100 99.9253

OutGuess
0.05 82.8102 83.4828 83.707 90.3587 91.0314 92.2272 92.3019 91.704
0.1 97.1599 97.7578 98.3558 98.58 98.8789 98.8789 98.8789 99.0284
0.2 97.1599 97.7578 98.58 98.6547 98.8789 98.8789 98.8789 99.0284

F5

0.05 57.6981 60.2392 61.2855 60.8371 61.3602 61.6592 61.7339 62.5561
0.1 76.8311 79.6712 81.9133 82.8102 84.0807 83.8565 83.5575 84.006
0.2 96.4126 96.562 96.7115 95.6652 97.0105 96.1136 96.1136 95.9641
0.4 97.8326 97.2347 97.1599 96.3378 97.4589 96.4873 96.4126 96.3378

StegHide

0.05 68.5351 69.5815 70.7025 71.6741 73.3931 72.7952 73.3184 73.1689
0.1 76.3827 77.6532 78.1016 80.4185 82.287 81.2407 82.5859 81.9133
0.2 86.2481 87.9671 88.1913 89.6861 90.8819 90.9567 90.7324 90.583
0.4 91.2556 92.3019 92.1525 92.8251 93.0493 93.2735 92.9746 93.1988

JPHS

0.05 81.9133 83.1091 82.2123 82.3617 82.4365 81.7638 81.3154 83.0344
0.1 84.006 85.9492 87.2197 86.9208 87.0703 85.8744 85.2018 87.3692
0.2 92.7504 93.0493 95.142 95.441 95.441 94.5441 94.9178 94.9178
0.4 97.8537 98.1717 98.0922 98.0127 98.2512 97.6948 98.4897 97.2973

Analyzing Calibrated Markov Feature Set

Note that in Figure 2.2 (Univariate), last 81 features corresponds to Calibrated Markov Features introduced
in [53]. Based on this graph, it is interesting to note that Calibrated Markov features has high Mahalanobis
distance and hence may contain high discriminatory power for steganalysis. Based on this observation,
we analysis 81 Calibrated Markov features separately in this section. To understand the importance of
Calibrated Markov features, we combine the training files for each steganographic algorithm (each training
file contained 669 cover image and 669 stego images of bpc = 0.05, 0.1, 0.2, 0.4 with the exception of OutGuess
where stego images were generated only with bpc = 0.05, 0.1, 0.2) into one file which we used our sample
space. This results in 3329 cover images and 3329 stego images. We emply Mahalanobi’s distance to rank the
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Figure 2.3: Mahalanobi distance graph for univariate and multivariate feature reduction Calibrated Markov
Feature set

features and apply two search heuristic to reduce the number of features and also increase the accuracy at
the same time. In first case, we consider each feature individually and rank them based on their Mahalanobis
distance and pick to n features. This is known as Univariate Feature Reduction. In second case, we employ
Mahalanobis distance for Multivariate Feature Reduction. Figure 2.4.1 plots Mahalanobi distance versus
features in univariate and multivariate case.
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Table 2.5: Feature Reduction using Univariate Mahalanobis distance for Calibrated Markov

bpc n = ∗ n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

Jsteg

0.05 94.4694 94.9178 95.2915 94.843 94.9925 94.3946 93.7967 94.3946 94.0957
0.1 99.1031 98.3558 98.9537 98.8789 99.1779 98.8789 99.0284 99.0284 98.8789
0.2 99.1031 98.3558 98.9537 98.8789 99.1779 98.8789 99.1031 99.0284 98.8789
0.4 99.1031 98.3558 98.9537 98.8789 99.1779 98.8789 99.1031 99.0284 98.8789

OutGuess
0.05 82.2123 82.5859 81.3901 80.9417 80.7175 80.7175 82.287 81.8386 82.287
0.1 95.0673 93.1241 93.0493 93.7967 93.4978 94.7683 94.1704 94.4694 94.5441
0.2 95.5904 93.4978 93.4978 94.3946 94.0209 95.2167 94.6188 94.9925 95.0673

F5

0.05 60.4634 58.3707 60.0149 60.3139 60.8371 60.0897 60.4634 60.3886 60.0897
0.1 79.0732 72.571 76.9058 77.5785 77.9522 78.849 79.3722 79.5217 78.9985
0.2 95.3662 93.423 94.6188 94.9925 94.9925 94.0957 94.3199 94.3199 95.441
0.4 95.6652 95.441 95.5157 95.7399 95.5904 94.6188 94.9178 94.843 95.7399

StegHide

0.05 70.5531 70.3288 70.4783 69.8057 70.1794 69.3572 70.3288 70.3288 70.7025
0.1 77.6532 75.6353 76.0837 75.71 76.3079 76.3827 77.6532 77.2048 77.8027
0.2 86.5471 83.8565 83.1091 82.7354 83.4081 84.0807 85.2765 86.0987 86.846
0.4 90.9567 87.2945 86.6966 87.0703 86.7713 87.8924 89.0882 90.0598 91.1809

JPHS

0.05 65.6203 59.9402 65.8445 66.293 65.3961 65.0972 64.7982 65.3961 66.293
0.1 69.6562 62.4813 68.6846 68.3109 69.133 69.2825 69.3572 70.4036 70.7025
0.2 88.1913 82.8849 87.0703 85.8744 88.1166 89.3871 89.6114 90.0598 88.4903
0.4 93.5612 90.3021 93.7997 93.4022 93.7997 94.2766 94.1176 94.8331 93.1638

Table 2.6: Feature Reduction using Multivariate Mahalanobis distance for Calibrated Markov

bpc n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

Jsteg

0.05 92.3767 93.2735 95.2167 93.7967 94.3199 94.1704 94.2451 94.4694
0.1 98.281 98.8042 99.0284 97.8326 98.4305 98.58 98.8042 99.1031
0.2 98.3558 98.9537 99.0284 97.9073 98.5052 98.6547 98.8789 99.1031
0.4 98.3558 98.9537 99.0284 97.9073 98.5052 98.6547 98.8789 99.1031

OutGuess

0.05 81.988 83.4828 82.8102 83.6323 82.8102 82.8102 81.988 81.2407
0.1 94.4694 95.142 94.9925 94.6936 95.142 94.843 94.1704 94.4694
0.2 94.7683 95.5157 94.9925 94.9925 95.5904 95.3662 94.6936 95.142

F5

0.05 57.7728 59.8655 58.1465 61.0613 59.4918 60.5381 60.4634 60.0897
0.1 73.9163 77.6532 75.9342 80.1196 77.8027 78.6248 80.4185 78.849
0.2 93.2735 94.4694 95.5157 95.2915 95.142 95.0673 95.0673 95.3662
0.4 95.6652 95.441 96.7115 95.7399 96.0389 95.5904 95.441 95.6652

Steghide

0.05 70.1794 69.7309 71.5994 70.6278 70.2541 70.2541 70.0299 70.2541
0.1 76.9058 75.9342 77.13 77.6532 76.7564 77.728 76.7564 77.728
0.2 84.9776 84.0807 85.3513 85.0523 84.9776 85.6502 85.2765 86.9208
0.4 89.0882 87.9671 89.1629 89.5366 89.1629 89.5366 89.3124 91.1809

JPHS

0.05 65.3961 65.3961 65.7698 66.5919 66.6667 66.8161 66.6667 63.6024
0.1 69.432 69.0583 69.7309 71.151 69.7309 71.3004 70.5531 68.3109
0.2 85.5007 87.8176 88.565 88.4155 87.8176 87.8924 88.565 90.3587
0.4 93.8792 93.5612 94.1971 93.3227 93.7997 93.1638 93.7202 96.0254

2.4.2 Experiments using BOWS2 Database for Merged

Using the heuristic of selecting approximately 10 times as many training examples as there are features [34],
we used 5000 original image data for training. Recent research results indicate [47] that using a specified
steganalysis scheme - the set of extended DCT feature values from the Merged model having 193 feature
variables - a minimum of 5000 image training data was needed to produce classification results that have
less than 1 percent standard deviation in their output values. For our experiments, we use the BOWS2
database [66], containing 10 000 images, and pick half of them to create the training database and use the
remainder for testing. With approximately 10 000 images for the training set (5000 cover and 5000 stego),
we assume that this large data set will deliver relatively low variance in classifier predictability and that
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the detection accuracies we obtain produce reliable steganalysis in a comparable sense. Our main interests
are in comparing results of the full complement of features to classifiers trained with fewer features. Our
assumption is not unreasonable, in particular the data used in [47] was also the BOWS2 database with the
extended DCT feature set, very similar to our experiment. Those authors showed that for that data set and
feature set, variance of results was experimentally verified to be under 1 percent. Other authors have also
used approximately 5000 images for similar research [37, 43, 20].

The BOWS2 database consists of images in pgm format of size 512x512. The images were divided
randomly into two disjoint groups of equal size. The first group was used to create the training examples
with both cover and stego data. The second group contained the remaining images that were used for testing.
We did not use those stegoimages for which the steganography embedding algorithm exited unsuccessfully.
Thus, no image or its different variations were simultaneously seen by the SVMs for testing and training,
and there were an equal number of images used for cover and stego. This strict division of images enabled us
to estimate the performance on never seen images. We intentionally chose to generate our cover and stego
images for training and classification in a way to avoid double compression, reformatting the raw pgm files
into JPEG files saved with 75% quality factor. Recall that a JPEG image is double compressed when it
is first compressed using quantization matrix Q1, then uncompressed and re-compressed using quantization
matrix Q2, where Q2 6= Q1. When an image undergoes double compression, the statistics of DCT coefficients
can change, and may resulting in misclassification if the steganalyzer is not designed to handle detection of
double compression. Our detection scheme assumes that the data has not been double-compressed.
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(d) Steghide
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Figure 2.4: Mahalanobis distance vs. feature group size for five embedding algorithms using features in [53].
Solid line: multivariate distances. Dashed line: univariate distances. Note different scales on distance axes.

We generate stego images by embedding data with different message lengths and different embedding
algorithms. The five different steganography embedding methods we consider are: OutGuess [54], F5 [67],
JPHide& Seek [3], StegHide [2], and JSteg [4]. Each of these methods embeds bits of value 0 or 1 directly
into the quantized DCT coefficient array. The payload is assumed to be an encrypted bitstream. We use
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bits per nonzero ac coefficient, or bpnz to describe message length, with bpnz = 0.05, 0.1, 0.2, 0.4. Images
embedded using Outguess have only bpnz = 0.05, 0.1, 0.2. Once the stego images are generated, we extract
feature values from the cover and stego images according to the steganalyzer by Pevný et al. in [53], which
we call Merged. The full suite of feature values are extracted initially, and subsets of the feature values are
used in accordance to the task at hand.

First, to determine the feature subset using the Mahalanobis distance, we gather all the feature data
calculated from the training set for all cover and all embedding algorithms at all levels of embedding. We
used 5000 cover and 1250*4 stego images (four levels of embedding) for calculating Mahalanobis distance for
each steganography algorithm. Note that in Eq. 2.4, the size of the (pooled) covariance matrix is equal to
the number of feature variables used. The regularized covariance matrix is invertible but for each new trial
set of k features, the inverse matrix V̂ −1 must be calculated, and thus this method is fairly computationally
time-consuming, especially as k increases. Once the ranking is complete, a classifier is built.

The SVM classifier we implemented was a soft margin support vector machine with gaussian kernel [13]
(using LIBSVM [16]). We determined the training parameters of the C-SVMs by grid-search performed on
the following multiplicative grid

(C, γ) ∈
{(

2i, 2j
)

|i ∈ Z, j ∈ Z
}

.

Although we do not use them, SVMs that use Mahalanobis kernels have been developed for pattern recog-
nition problems. In [29], the authors present a comparison of kernel Mahalanobis distance classifiers giving
experimental evidence that these types of classifiers can be advantageous for nonlinear pattern distributions.

We provide two rankings of the features. For the univariate ranking, we computed the Mahalanobis
distance using individual features. We use Equation 2.6 and a single feature j from the two classes cover
and stego, and compute p univariate values. The ranking for the univariate case is simply in decreasing
values determined by Equation 2.6. The Mahalanobis distance values for the univariate case are computed
separately for each of the five embedding algorithms, where the data for all levels of embedding available for
the specified embedding algorithm are combined (4*1250=5000). Once the univariate ranking is determined,
the Mahalanobis distance for groups of features of size k, k = 1, ..., 274 are calculated. Graphs for these
groups of univariate Mahalanobis distance values are shown in Figure 2.4 and indicated by the dashed line
in each of the five graphs.

For a second experiment, we used a forward feature selection method to create subsets of features that
collectively give Mahalanobis distance values. We call this multivariate feature selection. Starting with
the feature that gave the largest univariate Mahalanobis distance value in Equation 2.6, the Mahalanobis
distance values for all remaining feature vectors paired with the first feature were calculated (k = 2 in
Equation 2.4), and the feature that gave the largest Mahalanobis distance value over all pairs was selected
as the second feature. This continued in an iterative fashion, using the multivariate Mahalanobis distance
measure as given by Equation 2.4 for k = 2, 3, ..., 274, selecting the feature that gave the largest Mahalanobis
distance value at each iteration. This produced a second ranking of the features that was different from the
univariate ranking. The multivariate Mahalanobis distance values for groups based on this second ranking
are shown in Figure 2.4 and indicated by the solid line in each of the graphs. Based on the graphs in Figure
2.4, it is clear that every feature used in Pevný et al. [53], paper contributes some information that increases
the Mahalanobi distance monotonically.

Jsteg

Univariate Ranking:

236 250 245 227 244 259 241 180 224 251 176 169 216 256 225 4 242 263 5 223 171 175 179 235 229 268 217
253 185 184 177 48 61 49 172 234 182 181 252 116 186 2 272 189 60 243 248 117 173 27 3 183 26 207 190 6
37 260 205 191 59 174 178 232 15 7 28 1 218 240 209 118 119 114 101 100 269 247 220 206 13 170 246 11 99
62 129 35 46 262 266 228 16 38 226 233 9 271 108 261 219 211 249 24 58 25 14 267 230 29 231 98 57 47 237
51 36 50 265 64 56 96 12 115 94 34 192 8 130 45 202 31 23 125 188 19 270 238 133 66 274 21 213 212 166
187 196 112 33 102 10 43 17 22 97 54 200 222 52 199 106 138 168 44 131 255 239 198 53 20 55 143 42 124
88 86 221 41 148 193 123 208 194 18 149 210 204 105 203 141 40 151 195 110 104 147 167 80 68 107 81 254
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146 87 126 70 120 145 201 63 85 76 67 32 161 144 93 109 122 82 83 134 84 103 30 121 113 264 69 160 65 152
136 137 78 273 95 89 128 135 257 197 162 157 127 165 155 154 139 258 140 158 142 159 111 153 39 132 163
150 156 74 71 91 164 214 79 77 92 90 75 215 72 73
Multivariate Ranking:

236 120 116 233 180 113 106 169 183 119 177 225 6 181 218 102 166 167 114 259 249 170 176 185 117 108
124 50 118 94 51 268 16 15 224 232 174 96 175 5 186 178 8 115 250 238 40 187 244 27 38 254 48 4 215 112
18 214 110 98 97 49 179 101 111 37 99 172 199 173 171 258 129 138 7 182 100 109 198 197 257 241 141 144
261 87 240 216 76 146 122 270 90 131 41 248 251 212 213 121 272 26 31 189 184 20 168 147 202 72 93 14 86
89 58 91 88 243 273 92 128 28 247 220 39 104 47 59 253 33 79 69 68 207 9 22 3 246 134 95 67 43 149 13 136
127 73 71 75 145 263 61 195 82 80 194 83 74 84 188 142 52 70 78 81 77 85 42 274 155 237 63 103 190 162
163 44 158 66 153 60 62 125 156 135 126 19 265 256 219 231 165 239 271 35 2 159 269 217 206 133 139 32
10 1 45 262 36 140 148 152 65 57 266 200 205 154 193 191 264 12 161 160 54 157 208 105 235 30 132 23 226
203 245 242 137 229 210 130 24 228 123 11 46 17 223 196 260 150 230 204 164 21 56 211 107 34 55 222 25
143 252 151 64 192 255 209 53 267 234 29 221 227 201

OutGuess

Univariate Ranking:

251 250 171 179 236 217 232 227 169 176 180 224 243 241 173 189 234 181 6 7 242 5 48 37 177 185 186 50
254 182 256 245 115 26 215 225 240 15 252 200 59 97 238 223 233 95 187 51 96 191 105 183 248 94 192 109
188 237 258 206 271 110 4 228 107 255 98 259 244 226 8 117 27 269 214 100 99 229 266 262 172 166 175 60
20 120 199 184 61 39 101 205 124 167 268 130 53 42 113 174 247 263 231 207 235 19 139 118 3 28 216 272
178 132 190 170 196 142 40 261 103 128 219 108 9 265 13 131 116 64 35 62 140 111 31 119 127 239 134 123
208 30 46 41 260 267 253 104 2 29 230 198 24 57 76 121 63 77 16 22 270 249 145 44 202 133 17 264 10 114
136 125 144 88 85 148 143 1 220 79 218 14 18 87 21 49 157 150 112 222 141 149 38 213 90 91 43 137 257 246
32 86 47 211 11 158 52 80 78 89 102 197 36 146 55 152 193 66 84 92 156 67 25 65 201 12 212 274 33 122 135
221 195 138 160 58 209 151 68 71 69 34 204 210 162 273 153 164 54 161 93 56 194 73 203 126 23 72 70 129
83 75 82 106 154 168 165 159 155 163 81 45 74 147
Multivariate Ranking:

251 250 169 217 227 232 179 50 94 233 197 167 168 258 172 103 115 254 174 5 243 173 242 223 16 249 192
180 118 236 199 252 234 98 124 193 95 241 151 257 188 31 25 120 137 240 108 229 186 224 265 113 45 209
200 47 271 176 133 136 270 170 44 261 129 140 6 106 125 96 247 194 24 158 155 171 76 244 190 4 37 231
185 12 21 253 268 206 215 272 33 222 221 228 101 100 53 142 9 85 15 230 175 178 71 56 1 23 69 67 121 112
274 105 135 42 14 203 213 237 259 162 92 153 90 93 62 107 60 104 38 18 39 225 51 2 164 19 189 201 130 126
117 144 72 202 181 183 157 177 184 86 40 41 34 187 262 10 182 74 205 165 163 260 109 91 49 89 132 208 65
152 81 248 263 77 79 80 83 35 149 150 156 148 32 26 128 211 146 43 141 127 226 111 207 123 28 114 20 7
159 8 30 46 273 54 87 88 145 147 57 210 70 55 66 161 139 82 84 160 196 119 134 143 64 116 61 17 131 220
48 219 63 3 97 154 212 138 11 22 110 269 214 235 246 75 255 256 218 191 266 58 264 239 204 99 267 36 102
52 13 195 198 238 68 122 29 27 166 245 59 73 78 216

F5

Univariate Ranking:

185 177 187 6 233 243 5 7 175 250 234 241 242 170 192 245 258 188 174 181 190 172 191 178 171 183 184
28 50 179 115 246 61 118 249 114 167 244 4 236 120 119 8 237 117 266 247 225 238 116 257 256 193 17 189
112 169 173 232 39 217 113 168 216 271 252 49 51 202 240 62 248 29 60 208 27 220 269 200 265 199 262 9
3 166 211 198 218 224 18 255 37 19 15 41 207 186 239 16 182 231 40 229 38 209 48 260 52 180 176 201 253
254 223 219 274 20 10 2 59 63 26 30 268 230 210 42 14 36 53 235 47 94 222 21 267 272 11 35 261 43 13 31
221 130 1 103 214 25 22 95 54 105 46 139 58 126 64 34 264 110 107 44 45 131 12 123 148 212 55 24 227 86
140 85 157 128 213 125 77 57 194 65 32 68 149 108 228 251 203 76 33 142 206 158 67 70 259 96 66 205 204
132 88 122 109 79 97 195 124 151 133 93 23 160 104 134 263 138 56 98 143 87 215 89 106 90 153 145 91 141
129 101 121 147 102 71 273 150 75 165 135 137 156 83 127 270 197 226 196 82 69 136 84 80 163 161 152 162
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144 73 72 146 74 111 159 164 81 154 99 155 78 100 92
Multivariate Ranking:

185 247 227 229 61 116 182 7 118 228 235 190 244 238 107 60 183 197 199 257 125 169 246 267 8 252 249
245 236 4 219 176 5 234 103 115 50 6 181 225 224 119 121 18 62 223 231 149 157 193 28 105 27 114 123 243
29 208 39 73 81 200 11 120 215 259 268 195 162 265 26 166 242 88 263 210 9 3 22 218 239 128 209 51 49 232
20 10 2 220 211 56 272 260 104 38 113 40 122 34 131 158 250 203 206 138 160 126 83 12 55 41 75 194 204 19
72 23 191 202 143 80 57 178 262 240 100 135 117 261 226 241 48 67 71 258 93 168 167 201 141 31 87 25 163
108 111 173 69 1 90 153 216 77 35 76 79 13 170 85 14 92 47 171 15 94 106 58 37 95 172 165 274 273 212 145
32 150 53 142 179 254 30 189 192 175 187 101 54 151 43 214 154 177 207 144 133 52 89 132 96 124 186 65
24 33 269 152 221 159 237 134 63 148 156 137 98 68 99 21 66 161 45 70 17 109 112 139 74 256 16 184 136
127 36 86 129 102 155 78 140 46 188 253 97 147 266 251 180 174 196 110 82 59 164 255 222 91 217 198 248
230 84 233 130 42 44 64 146 213 205 270 264 271

Steghide

Univariate Ranking:

251 250 236 224 183 191 217 171 227 179 232 243 241 245 186 182 176 180 189 173 234 193 181 169 6 50 223
242 7 5 115 185 177 254 225 233 200 256 238 215 187 214 240 252 206 271 248 196 269 226 19 205 51 117 49
52 175 268 228 48 41 130 61 262 247 110 253 255 37 229 263 105 123 199 128 26 39 63 109 127 272 131 219
133 59 121 166 97 113 30 118 120 266 4 95 28 107 15 258 167 9 244 8 116 125 207 218 3 124 96 174 237 134
170 119 94 106 98 136 188 100 192 99 132 101 220 135 260 209 137 126 111 261 267 129 231 114 103 265 18
17 38 40 249 202 27 190 102 235 239 138 178 197 112 42 29 2 246 58 14 270 201 53 198 36 20 47 1 195 257
108 273 45 11 10 143 22 35 31 104 204 230 122 60 87 70 208 25 212 34 77 13 157 184 259 216 172 141 64 93
46 54 152 211 65 150 80 144 159 24 56 146 66 145 210 74 89 73 76 12 163 222 148 162 78 67 75 44 139 84 57
72 33 82 90 142 274 69 264 203 147 21 55 68 62 140 221 16 91 164 168 43 85 154 79 86 156 194 153 165 151
71 158 213 23 32 161 83 92 88 81 155 160 149
Multivariate Ranking:

251 250 173 191 193 169 179 217 235 227 167 168 241 181 183 8 246 6 4 171 216 224 197 50 258 236 242 247
118 200 232 223 59 120 252 182 180 185 31 67 134 113 122 229 254 170 58 177 25 94 199 9 104 124 35 268
27 130 249 138 148 38 41 3 102 233 243 132 234 26 135 147 208 152 220 16 18 115 136 126 225 29 28 114
139 112 82 79 76 192 190 211 269 161 218 96 93 75 266 127 56 1 34 97 88 47 153 137 145 22 162 270 143 80
57 10 214 2 238 70 128 121 12 54 154 101 109 205 267 274 159 44 244 19 90 131 156 62 125 105 5 7 226 187
172 261 166 260 53 195 91 49 150 24 81 51 99 95 149 43 204 248 119 68 196 37 98 123 77 265 111 92 46 52
107 60 61 116 17 133 129 175 188 110 71 221 142 151 237 32 14 85 176 178 63 222 219 30 72 163 160 55 86
39 186 23 87 141 165 40 42 201 157 108 210 144 117 45 245 202 257 203 273 264 103 69 13 106 206 231 21
73 189 84 215 259 48 89 184 64 36 65 15 212 100 155 11 33 146 74 83 256 272 271 174 239 262 255 228 230
240 194 213 198 207 263 158 66 78 209 253 140 20 164

JPHide

Univariate Ranking:

115 50 51 49 177 185 216 113 6 39 234 4 117 243 256 124 174 15 236 167 8 106 238 7 170 5 245 247 181 172
192 188 41 37 19 112 190 17 184 40 178 233 38 187 94 120 246 259 225 237 189 258 48 173 18 252 52 199
179 171 169 207 223 131 193 9 3 61 260 208 215 95 130 183 191 198 175 257 122 242 263 10 2 104 116 241
268 267 20 14 253 266 62 108 13 21 262 271 240 60 28 118 166 261 224 133 205 269 11 1 126 97 235 209 250
272 16 128 186 182 217 123 22 35 43 105 12 110 100 248 222 101 180 196 176 98 168 127 96 226 46 54 121
200 119 114 134 109 139 251 136 137 148 129 211 76 85 111 218 132 26 30 255 249 36 25 204 29 42 31 142
206 44 27 231 227 88 99 244 34 229 59 63 273 157 67 265 232 102 24 32 264 23 77 33 45 210 55 195 270 149
103 135 47 138 107 274 64 230 202 58 53 152 80 254 57 65 140 144 90 89 125 155 82 86 197 83 56 150 143
91 79 221 151 220 154 219 78 66 162 145 81 72 146 153 93 73 147 92 161 163 164 74 160 213 71 156 212 84
201 75 165 228 203 70 194 158 141 87 159 68 69 239 214
Multivariate Ranking:
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115 216 50 167 225 168 243 177 178 172 199 49 185 61 51 116 198 247 127 190 183 13 189 126 192 123 260
179 21 109 175 274 197 166 233 226 173 36 19 1 27 181 6 187 252 118 227 96 110 104 269 253 170 16 112 17
108 117 5 182 40 113 38 238 184 95 120 128 7 10 208 74 132 131 103 121 202 201 56 29 114 28 249 22 235
130 231 93 39 241 150 212 148 106 133 59 98 251 58 3 47 91 174 23 228 155 54 102 9 188 169 196 266 257
229 163 97 111 8 4 267 270 268 48 94 122 20 14 85 60 107 62 125 134 64 213 100 242 259 273 209 207 101
68 78 217 152 144 157 80 211 18 220 203 272 244 12 76 136 162 153 15 63 261 195 250 245 204 41 186 176
55 11 44 158 164 66 161 160 146 137 205 79 83 92 194 264 119 30 151 2 219 222 87 25 86 141 53 89 31 24
214 193 246 149 43 154 34 84 159 142 239 254 218 82 72 67 215 200 124 88 145 210 32 143 37 139 234 240
52 140 42 271 230 70 69 65 255 46 223 156 77 81 35 237 90 99 33 26 129 57 206 248 224 258 135 191 256 171
265 263 147 138 105 75 73 221 236 262 180 165 232 71 45

Since our goal is to produce classifiers using these subsets and determine if fewer features can produce
classification results comparable to the full suite of features, we next created SVMs for feature sets of
increasing size. We elected to choose feature subsets of size 10 ∗ M, M = 1, 2, ..., 27, plus the entire set of
274 features. For each set of features and for each embedding algorithm, we create an SVM, and produce
detection accuracy data using the test set. An SVM was created for the 28 feature sets in the univariate
ranking, and for the 28 feature sets in the multivariate ranking. To train each SVM, the cover image data
provided 5000 feature vectors, and the stego image data (in total) provided 5000 training data. We test for
accuracy on each level of bpnz for each embedding algorithm and separately for the cover data (no hidden
data). For testing, we use the unseen data with 5000 cover images and 5000 stego images for each embedding
level, for a total of 25000 test data.

The accuracies for each embedding algorithm and each embedding level are displayed in Figures 2.5 and
2.6. The graphs show that for many instances, accuracies close to the full set of features are reached with
many fewer features than the full 274. Table 2.7 displays a few of the top results in number format that
supports this observation. Refer to Appendix for complete result.

2.5 Discussion of Results

From the graphs and table, we can see there are many instances of feature sets that produce results within 1-
2% of the Merged feature set. In general, the multivariate feature sets were able to give results comparable to
the univariate feature sets but with fewer features, although for both rankings, the lower levels of embedding
required more features than the higher levels of embedding to give comparable results to the full Merged set.
Jsteg in its sequential embedding form is known to be straightforward to detect. For the freeware available
on the internet, Jsteg embeds payload bits are embedded in a lexicographical order from top left to bottom
right of the coefficient array. Embedding in a random order is of course preferable but software code must be
written by a user to implement this. Evidence of highly accurate detection rates are displayed in graphs in
Fig. 2.2(a) and Fig 2.3(a). Also, full embedding at the 0.4 bpnz level is detected at high levels of accuracies,
near 100% for all the steganalyzers of all sizes except for size 10 features in JPHide using the univariate
ranking, and sizes 10-30 features in Steghide for multivariate ranking. Lower rates of embedding have lower
rates of detection, especially for 0.05 bpnz in F5 where matrix embedding is used. Detection rates for the
class cover are generally in the upper 90s% except for F5 and Steghide. The false positive rate for each
steganalzyer is 1-(cover detection rate). The way we implemented the SVMs did not allow us to choose
detection accuracies based on false positive rates. Higher or lower false positive rates may be desirable or
necessary for certain applications. Forensic investigations typically require higher lower positive rates. The
general trend was for detection accuracies to increase as more features were added to the classifiers with
increases leveling off or oscillating between 50-100 features. However, some classifiers had jumps up or down
in accuracy rates as a group of 10 features were added to the current set. This is apparent in Outguess-
Univariate and Multivariate, where accuracies increased from 80 to 90 features, and in JPHide-Univariate,
where accuracies decreased from 60 to 70 features, and a curious dip in F5-Multivariate from 160 to 170
features. Another phenomenon that occurred was in several instances, cover detection rates changed in the
opposite direction of stego detection rates from one size to another. For example, if a user wanted to choose
a feature subset based on a high cover detection rate so that the false positive rate was low, then the lowest
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Figure 2.5: Detection accuracy results using univariate feature ranking for groups increasing by 10 features,
cover images (solid line) and four embedding rates for five algorithms. Note different scales on distance axes.22
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Figure 2.6: Detection accuracy results using multivariate feature ranking for groups increasing by 10 features,
for cover images (solid line) and four embedding rates for five algorithms. Note different scales on distance
axes.
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embedding detection rate may not be as high as possible. This happens in F5-Multivariate, where one of the
highest cover detection rates occurs for n=170 features, but that is also one of the lower detection rates for
0.01 embedding. Trade-offs in detection accuracies must be made. In Table 2.7, we give a listing of the top

Table 2.7: Three Top Ranked Classifiers for Univariate and Multivariate Rankings. Displayed for each
embedding algorithm and level of embedding. k = number of features.

Merged
Univariate Ranking Multivariate Ranking

1st k 2nd k 3rd k 1st k 2nd k 3rd k

Jsteg

Cover 99.64 99.78 70 99.74 80 99.72 90 99.68 150 99.66 130 99.66 140

0.05 bpnz 99.10 99.20 230 99.18 220 99.18 240 99.40 110 99.34 80 99.34 100

0.10 bpnz 100.00 100.00 210 100.00 220 100.00 230 100.00 60 100.00 70 100.00 80

0.20 bpnz 100.00 100.00 40 100.00 50 100.00 60 100.00 10 100.00 20 100.00 30

0.40 bpnz 100.00 100.00 10 100.00 20 100.00 30 100.00 10 100.00 20 100.00 30

Outguess

Cover 98.78 98.92 270 98.82 250 98.78 260 98.92 270 98.90 260 98.82 170

0.05 bpnz 95.26 95.92 100 95.92 120 95.76 200 95.58 250 95.52 270 95.48 260

0.10 bpnz 99.92 100.00 60 100.00 70 100.00 90 100.00 50 100.00 60 100.00 80

0.20 bpnz 99.98 100.00 10 100.00 30 100.00 40 100.00 10 100.00 20 100.00 30

F5

Cover 91.82 93.56 70 93.54 110 93.54 120 93.22 170 93.16 20 93.16 90

0.05 bpnz 59.64 59.64 274 59.28 140 59.28 150 59.64 274 59.50 270 59.18 260

0.10 bpnz 97.78 98.36 150 98.32 140 98.32 160 98.24 210 98.16 200 98.12 190

0.20 bpnz 99.96 100.00 20 100.00 30 100.00 90 100.00 50 100.00 60 100.00 70

0.40 bpnz 99.98 100.00 20 100.00 30 100.00 40 100.00 20 100.00 30 100.00 40

Steghide

Cover 91.78 92.22 190 92.10 180 92.02 120 92.26 50 92.10 80 91.94 30

0.05 bpnz 69.52 70.06 260 69.68 270 69.52 274 69.88 160 69.86 260 69.66 210

0.10 bpnz 87.96 88.12 260 88.00 270 87.96 274 88.24 250 88.22 200 88.18 170

0.20 bpnz 98.72 99.06 90 99.02 80 98.96 100 98.88 100 98.86 60 98.86 120

0.40 bpnz 99.96 100.00 80 100.00 90 100.00 110 100.00 10 100.00 160 100.00 170

JPHide

Cover 97.50 98.22 50 98.20 40 98.20 80 97.98 10 97.82 130 97.80 20

0.05 bpnz 82.51 83.44 220 83.38 210 83.26 150 83.94 60 83.60 20 83.52 50

0.10 bpnz 90.70 91.16 150 91.14 160 91.14 180 91.28 60 91.20 170 91.08 140

0.20 bpnz 98.70 98.84 160 98.84 170 98.82 60 99.02 60 98.82 70 98.78 50

0.40 bpnz 99.82 99.96 30 99.96 40 99.96 50 99.96 50 99.94 20 99.94 40

three ranked feature sets for each ranking algorithm, univariate and multivariate. If a user wanted to reduce
the feature size significantly, there are a number of classifiers that give results close to the Merged results.
For example, to detect JPHide and Seek cover images to within 1% of the Merged accuracy, 10 multivariate
features could be used, and 50-60 could give as good as or better accuracy than the Merged for all levels of
embedding for JPHide and Seek. We also found that many of the top features are from Calibrated Markov
feature set for all the steganographic algorithm. This gives a strong indication that features which exploit
neighborhood dependency among DCT coefficients are effective in steganalysis. We use this information to
build a model for steganalysis in the next chapter.
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Chapter 3

STEGANALYZER FEATURES
DESIGNED ON STOCHASTIC
MARKOV MODEL

In this section, we present a new set of features for steganalysis. Experiments in Section 2.4 show that
features which exploit neighborhood dependency among DCT coefficients are well suited for steganalysis. A
Markov based process has been used with success in [61, 18] to model DCT coefficients for the purpose of
steganalysis. In this chapter, we show the use of the Partially Order Markov Model (POMM) [23, 22, 31]
for steganalysis which generalizes the concept of local neighborhood directionality by using a partial order
underlying the pixel locations.

Markov random fields are a well-known modeling tool and have been used successfully in many areas of
image analysis. However, the use of MRFs continues to be problematic when problems require computing an
explicit joint probability, such as for texture classification and parameter estimation. A nice subclass of MRFs
was introduced by Abend et al [9] for image analysis, called Markov mesh models (MMMs). MMMs allow,
under minimal and reasonable assumptions, an explicit closed form for the joint probability of the random
variables (r.v.s) at hand, expressed in terms of a conditional probability. The conditional probabilities express
the spatial dependency of the data, via a directional neighborhood, unlike the undirected neighborhood of
a MRF model. Abend et al. also showed that the conditional probability of one r.v. given the rest of
the r.v.s can be expressed in terms of r.v.s in a local spatial neighborhood. A partially ordered Markov
model generalizes the concept of local neighborhood directionality by using a partial order underlying the
pixel locations. It has been shown that this property results in a computational advantage of POMMS over
MRFs: whenever the normalizing constant needs to be calculated, such as in determining the joint probability
distribution function (pdf), the joint pdf of a POMM is available in closed form, and the normalizing constant
for a POMM is always known and equal to the value one [23].

It is beyond the scope of this chapter to give a detailed introduction to POMMs, but a few ideas pertinent
to the discussion at hand can be discussed. We assume we have a partial order ≺ placed on the set of pixel
locations in the image, or a poset. It can be shown that for a given poset (A,≺), we have a class of acyclic
directed graphs where each class corresponds to the same poset (A,≺) but the individual acyclic directed
graphs in the class have different edge sets. The edge sets give rise to the neighborhood relationship between
pixel values, which in turn are used to describe conditional probabilities on neighborhoods of pixels. We
shall be interested in the Markovian neighborhood relationship, described for POMMs in Definitions 1 and
2, where A is the set of r.v.s in the image, and E a set of edges. Given a directed edge (C, B), tail on C,
head on B, we write C ≺ B under the partial order ≺.

Definition For any B ∈ A, the cone of B is the set cone B = {C ∈ A : C ≺ B, C 6= B}.

Definition For any B ∈ A, the adjacent lower neighbors of B are those elements C ∈ A such that (C, B) is
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Figure 3.1: The adjacent lower neighborhood adj≺(ai,j). The hash marks represent the location (i, j).

a directed edge in the graph (A, E). Formally, adj≺B = {C : (C, B) is a directed edge in (A, E)}.

We give a simple example of the adjacent lower neighborhood in Figure 3.1. Here ai,j−1 ≺ ai,j and
ai,j−1 ≺ ai,j . The definition of a POMM is as follows, where L0 is the set of minimal elements in the poset.
The notation P (A) denotes the (discrete) probability measure A, based on the r.v. A. We use the common
notation that an upper-case letter denotes the r.v. A, while a realization of A is denoted by a. P (A) is used
to denote the probability measure that defines the r.v. A, and P (A|B) is used to denote the conditional
probability measure of A given another r.v. B.

Definition The partially ordered Markov model (POMM) is defined as follows: Let B ∈ A where (A, E) is
a finite acyclic digraph of r.v.s and (A,≺) is its corresponding poset. Describe the set of r.v.s not related to
B by YB = {C : B and C are not related }. Then (A,≺) is called a partially ordered Markov model (POMM)
if for any B ∈ A\L0 and any subset UB ⊂ YB we have

P (B|cone B, UB) = P (B|adj≺B).

For our purposes, we assume that the acyclic digraph underlying the r.v.s of the random image A is
the one induced by replicating adj≺(ai,j) at all locations (i, j) in the pixel domain. In other words, the
neighborhood is translational invariant. It must be checked that the digraph thus generated is indeed
acyclic. Some restrictions that guarantee an acyclic digraph can be found in [23]. For example, the digraph
generated by adj≺(ai,j) in Figure 3.1 is acyclic.

This material is sufficient to discuss the features described next. The interested reader is directed to [23].

3.1 POMMS for Steganalysis

With the notation introduced in the previous section, we now discuss the application of POMMs to steganal-
ysis. We develop POMM directly on quantized DCT coefficients array as the embedding takes place directly
in that domain. Assume that A is on a rectangular pixel set, A = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N}. Let Θi,j

be an ordered indexing set that is invariant to shifts on the array where |Θi,j | = n. For example

Θi,j = ((i, j), (i, j + 1)) (3.1)

is such a set and |Θi,j | = 2. We describe an invariant cluster set Ci,j on the array of r.v.s A by Ci,j = {Ak,h :
(k, h) ∈ Θi,j}. A new set of r.v.s C is defined as C = {Ci,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N}. Let f : R

n → R be a
function that exploits the dependency among DCT coefficients in Θi,j . Apply f via an induced manner to
C by f(C) = W where W = {Wi,j : Wi,j = f(Ci,j) ∈ R, 1 ≤ i ≤ M, 1 ≤ j ≤ N}. For example, let Θi,j be
as in Equation 3.1 and define f : R

2 → R by

f(Ci,j) = Ci,j [0] − Ci,j [1] (3.2)
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Figure 3.2: Partially Ordered Markov Model for steganalysis

Then f applied to C produces f(Ci,j) = f(Ai,j , Ai,j+1) = Ai,j − Ai,j+1 = Wi,j . To create a POMM, we
define the partial order as Wi,j ≺ Ci,j for 1 ≤ i ≤ M, 1 ≤ j ≤ N . This in turn defines a directed edge with
tail on Wi,j and head on Ci,j . This is shown in Figure 3.2. The adjacent lower neighbors is the set of r.v.s
adj≺Ci,j = Wi,j . The POMM defined by its conditional probabilities, given by P (Ci,j |Wi,j).

This satisfies the definition of a POMM and all the properties now apply. For the probabilities at hand,
we are specifically interested in the function f given in Equation ?? and applied to the four directions
horizontal h, vertical v, diagonal d, and minor diagonal m. In this case, we have Ch

i,j = (Ai,j , Ai,j+1),

Cv
i,j = (Ai,j , Ai+1,j), Cd

i,j = (Ai,j , Ai+1,j+1), Cm
i,j = (Ai+1,j , Ai,j+1). Thus in each direction, we calculate

P (Ci,j |Wi,j) by noting that

P (Ci,j |Wi,j) = P (C1, C2|f(C1, C2)) (3.3)

= P (C1, C2|C1 − C2) (3.4)

=
P (C1, C2, C1 − C2)

P (C1 − C2)
(3.5)

which is then perform by histogram binning of the data. If we assume that −T ≤ ai,j ≤ T for 1 ≤ i ≤
M, 1 ≤ j ≤ N , then −2T ≤ wi,j ≤ 2T and it is easy see that there will be (2T + 1)2 number of such
conditional probabilities for each direction. We calculate conditional probabilities, given by P (Ci,j |Wi,j) for
all the four different directions and use average of the 4 directional probabilities to characterize f on A.
These conditional average conditional probabilities, denoted by F will be used as features for steganalysis.

We fit the POMM described on the array of quantized DCT coefficients as the embedding takes place
directly in this domain. Since the embedding process generally does not take into account the dependency
among DCT coefficients, correlations between DCT coefficients in cover and stego image is affected. We fit
a POMM as follows to exploit both inter and intra block dependency among DCT coefficients. Before we fit
the POMM, we clip quantized DCT coefficients to between [-T,T]. This is necessary, otherwise the pdf for
the POMM will be very sparse as DCT coefficient value lies within [-1024,1023]. In our case, we use T=5
as it is well known that more than 96% of the DCT coefficients are found to be within [-5,5] [27, 68]. This
results in 121 intra and 121 inter block features and hence a total of 242 features for steganalysis.

3.1.1 Intra block features

Certainly, steganographic embedding causes disturbance on the smoothness, regularity, continuity, consis-
tency, and/or periodicity of quantized DCT coefficients, and therefore correlations among DCT coefficients.
To quantify this change, we apply the above developed POMM on the quantized DCT coefficients array B

as described in Section 1.1. We use the conditional probabilities F of this POMM as intra block features.
Since this POMM models the dependency among DCT coefficients within a 8x8 DCT block, we refer to
these probabilities as intra block features.
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3.1.2 Inter block features

Inter block correlation is reflected among those JPEG modes, i.e., coefficients located in the same position
within the 8x8 blocks, which capture the frequency characteristics of those blocks. JPEG steganographic
embedding will disturb this kind of interblock correlation. Let the quantized DCT coefficient array B is of
size MxN . Then there are Nr ∗ Nc number of 8x8 DCT blocks where Nr = ⌈M

8 ⌉ and Nc = ⌈N
8 ⌉. Let X i,j

be the array formed by collecting DCT coefficients located at i, j from every 8x8 blocks. Equivalently, X i,j
u,v

is the dct coefficient located at i, j in u, v block where 1 ≤ u ≤ Nr, 1 ≤ v ≤ Nc. The array X i,j is called a
mode array as it represents mode or specific frequency from every 8x8 block.

To capture inter block dependency, we calculate POMM probabilities as given in Equation 3.5 on every
mode array X i,j. We use the averaged conditional probabilities of all the mode image as inter block features.

We further apply calibration to reduce the dependency of the feature values on the image content itself.
Let Io be the given image, and let its calibrated image be Ical. We calculate intra and inter block features
for Ical also, and then finally use Fo − Fcal as our features.

3.2 Experiments

It has been shown recently in [39] that the performance of a steganalyzer depends on the database used
for training and testing the steganalyzer. Therefore, for our experiments, we use four different databases to
compare our steganalyzer based on the proposed feature set with other steganalyzers.

• Bows2: This database contains 10000 images of size 512x512 in pgm format. Please refer to Section
2.4 for a detailed description.

• Camera: This database consists of 3164 images captured using 24 different digital cameras (Canon,
Kodak, Nikon, Olympus and Sony) previously used in [28]. They include photographs of natural
landscapes, buildings and object details. All images are of size 512x512 and stored in a raw format
(tif) i.e. the images have never undergone lossy compression.

• Corel: This database consists of 8185 images from the Corel database [8]. They include images
of natural landscapes, people, animals, instruments, buildings, artwork, etc. Although there is no
indication of how these images have been acquired, they are very likely to have been scanned from a
variety of photos and slides. This database has been previously used in [70]. All images are of size
512x512 and stored in a raw format (tif).

• NRCS: This database consists of 2375 images from the NRCS Photo Gallery [5].The photos are of
natural scenery, e.g. landscape, cornfields, etc. There is no indication of how these photos were
acquired. This database has been previously used in [38]. All images in this database too are of size
512x512 and stored in a raw format (tif).

The last three databases have been downloaded from [24]. We generate the training and testing set for each
database separately with a similar process as described in 2.4. For each database, feature set and for each
algorithm we train a soft margin support vector machine with gaussian kernel [13] (using LIBSVM [16]).
We used the Matlab grid provided by College of Engineering, Iowa State University for feature extraction.
It consists of Master - Slave architecture which scheduled the feature extraction jobs on multiple 64 bit
computers. Each machine runs on Quad Core Intel Xeon CPU 2.83 GHz and 4GB RAM. This sped up the
feature extraction time considerably, as we used another Quad Core Intel Xeon CPU 2.93 GHz and 3GB
RAM computer to run the SVMs.

We determined the training parameters of the C-SVMs by grid-search performed on the following mul-
tiplicative grid

(C, γ) ∈
{(

2i, 2j
)

|i ∈ Z, j ∈ Z
}

.
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We compare our results with steganalyzer from feature set proposed in [61], [18] and [53] abbreviating them
as Markov324, Markov486 and Merged, respectively. Figure 3.3, 3.4, 3.5 and 3.6 shows the detection accuracy
results.

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 92.67 99.75 99.75 99.83 100.00
0.05 bpc 24.43 98.15 99.58 98.99 98.99
0.10 bpc 41.62 100.00 100.00 100.00 100.00
0.20 bpc 77.93 100.00 100.00 100.00 100.00
0.40 bpc 98.74 100.00 100.00 100.00 100.00

Outguess

Cover 81.89 99.58 99.92 99.66 99.66
0.05 bpc 37.18 97.39 98.31 99.16 98.90
0.10 bpc 61.64 99.92 100.00 100.00 100.00
0.20 bpc 90.37 100.00 100.00 100.00 100.00

F5

Cover 90.31 93.01 93.18 93.43 92.00
0.05 bpc 29.65 48.19 56.53 50.72 49.71
0.10 bpc 74.47 95.79 97.39 96.46 95.20
0.20 bpc 99.92 99.92 100.00 100.00 100.00
0.40 bpc 100.00 99.75 100.00 100.00 100.00

Steghide

Cover 71.61 95.37 96.04 96.29 96.12
0.05 bpc 36.82 74.05 74.56 72.11 73.38
0.10 bpc 40.86 89.81 92.25 91.24 90.73
0.20 bpc 49.03 97.73 98.99 98.99 99.16
0.40 bpc 62.59 99.58 99.75 100.00 100.00

JPHide

Cover 83.40 84.92 89.22 91.49 90.90
0.05 bpc 29.16 37.45 30.68 28.23 25.44
0.10 bpc 32.94 44.45 39.63 39.46 37.85
0.20 bpc 51.86 69.71 84.43 88.83 92.22
0.40 bpc 90.76 96.02 98.39 99.07 99.66

Table 3.1: Detection accuracy results for POMM based features on NRCS database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 86.22 99.18 99.75 99.56 99.24
0.05 bpc 35.08 91.66 94.69 94.56 94.75
0.10 bpc 50.51 99.30 99.62 99.62 99.62
0.20 bpc 78.07 99.81 99.87 99.94 99.94
0.40 bpc 98.48 99.94 100.00 99.87 100.00

Outguess

Cover 74.53 97.47 97.91 97.47 96.65
0.05 bpc 52.39 89.80 94.14 94.39 93.69
0.10 bpc 72.71 99.35 99.81 99.81 99.81
0.20 bpc 94.03 99.93 99.93 100.00 100.00

F5

Cover 85.21 87.29 87.42 85.40 90.14
0.05 bpc 44.82 52.97 53.29 54.99 45.70
0.10 bpc 86.09 93.11 93.55 93.99 89.82
0.20 bpc 99.05 99.43 99.49 99.56 99.37
0.40 bpc 99.18 99.43 99.49 99.62 99.49

Steghide

Cover 58.85 90.01 90.52 90.14 89.51
0.05 bpc 56.01 76.80 79.71 80.28 79.14
0.10 bpc 60.05 87.55 90.39 90.39 89.82
0.20 bpc 67.13 96.97 98.23 97.98 97.98
0.40 bpc 77.24 99.56 99.94 99.81 99.75

JPHide

Cover 85.40 85.71 85.40 90.52 91.28
0.05 bpc 61.90 69.18 66.90 60.95 60.57
0.10 bpc 63.12 71.28 70.53 64.45 64.71
0.20 bpc 72.51 80.30 87.97 87.84 89.42
0.40 bpc 95.89 97.91 99.05 99.24 99.37

Table 3.2: Detection accuracy results for POMM based features on Camera database

3.3 Discussion of results

We first understand the effect of threshold parameter T on the detection accuracy. Note that different
value of T will develop a different POMM and hence we will get a different feature set. We determine the
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T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 87.02 97.80 99.76 99.80 99.95
0.05 bpc 29.79 97.39 99.61 99.58 99.39
0.10 bpc 54.72 99.98 100.00 100.00 100.00
0.20 bpc 86.78 100.00 100.00 100.00 100.00
0.40 bpc 98.53 100.00 100.00 100.00 100.00

Outguess

Cover 75.81 99.00 99.61 99.80 99.80
0.05 bpc 42.79 97.48 98.58 98.34 98.34
0.10 bpc 62.07 100.00 100.00 100.00 100.00
0.20 bpc 89.89 100.00 100.00 100.00 100.00

F5

Cover 86.19 93.55 92.55 92.18 91.79
0.05 bpc 27.32 37.51 41.10 40.81 40.74
0.10 bpc 50.42 88.76 91.30 90.69 90.27
0.20 bpc 99.07 100.00 100.00 100.00 100.00
0.40 bpc 99.88 100.00 100.00 100.00 100.00

Steghide

Cover 60.68 92.67 94.26 93.94 94.79
0.05 bpc 46.29 73.34 74.98 75.66 73.78
0.10 bpc 49.39 89.10 91.59 91.94 90.32
0.20 bpc 55.33 98.44 99.17 99.19 99.10
0.40 bpc 66.01 99.95 100.00 99.98 100.00

JPHide

Cover 79.06 83.68 86.17 85.46 85.24
0.05 bpc 42.18 42.59 43.26 44.33 44.41
0.10 bpc 44.52 48.80 52.54 54.94 56.23
0.20 bpc 54.37 72.63 89.44 92.66 92.88
0.40 bpc 81.80 99.14 99.93 99.90 99.95

Table 3.3: Detection accuracy results for POMM based features on Corel database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 93.18 98.84 99.48 99.46 99.48
0.05 bpc 33.48 92.72 97.24 96.80 96.38
0.10 bpc 58.30 99.52 99.78 99.78 99.72
0.20 bpc 83.48 99.98 100.00 100.00 99.96
0.40 bpc 97.14 100.00 100.00 100.00 100.00

Outguess

Cover 81.84 98.70 99.38 99.08 99.38
0.05 bpc 38.63 94.88 96.32 96.90 96.90
0.10 bpc 62.75 99.84 99.88 99.90 99.92
0.20 bpc 92.29 100.00 100.00 100.00 100.00

F5

Cover 87.66 90.86 91.12 90.66 89.42
0.05 bpc 29.16 49.56 51.56 52.66 54.58
0.10 bpc 66.90 95.90 96.78 96.90 97.18
0.20 bpc 99.46 99.98 99.98 100.00 99.98
0.40 bpc 99.78 99.98 99.98 100.00 100.00

Steghide

Cover 66.34 92.48 94.66 93.96 94.34
0.05 bpc 44.36 74.40 77.28 78.04 77.82
0.10 bpc 48.60 88.40 91.56 92.14 91.56
0.20 bpc 55.88 97.36 98.62 98.82 98.74
0.40 bpc 70.28 99.82 99.88 99.92 99.94

JPHide

Cover 90.34 92.64 94.66 95.14 94.98
0.05 bpc 64.95 71.73 69.60 70.90 70.80
0.10 bpc 66.66 74.13 73.25 74.67 75.32
0.20 bpc 74.18 85.12 94.01 94.25 94.79
0.40 bpc 92.88 99.14 99.78 99.60 99.58

Table 3.4: Detection accuracy results for POMM based features on Bows2 database
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detection accuracy rate for different POMM with T = 1, 2, 3, 4, 5 across 4 different database as described in
experimental section. It is clear from Table 3.1, 3.2, 3.3 and 3.4 that POMM with T = 1 (18 features) and
T = 2 (50 features) does not capture steganographic changes at lower embedding rate which is true across
different database. It is also clear that POMM with T = 3 performs better than other POMM in smaller
database (NRCS and Camera) for JPHide whereas POMM with T = 5 performs better on larger database.
This trend is also true for F5. For example, POMM with T = 3 gives a detection accuracy of 56% for 0.05
bpnz embedding for F5 algorithm whereas POMM with T = 5 gives an accuracy of 50%. But the trend is
reversed once you go to a larger database. In Bows2 database which has 10000 images, POMM with T = 5
gives a detection accuracy rate of 54% for F5 at 0.05 bpnz whereas POMM with T = 3 gives 51%. It can
also be seen that POMM with T = 3 gives an overall better detection for OutGuess irrespective of database
size. Performance of POMM steganalyzer with T ≥ 3 is approximately same for Jsteg and Steghide across
different database. It is clear that based on the database size, a POMM can be build by selecting appropriate
value of T . Based on above observation, we decide to chose POMM with T = 3 to compare our approach
with other steganalyzer proposed in the literature.

From Figure 3.3, 3.4, 3.5 and 3.6, it is clear that the steganalyzer based on our proposed feature set clearly
beats Markov324 and Makorv486 in all the databases at all the embedding rates for almost every steganog-
raphy algorithm. Even though the performances of the steganalyzers are very close to 100% for higher
embedding rates, their performances vary much more at lower embedding rates. Note that Markov486 is an
extension of Markov324 and the added inter block features have helped in boosting the performance. How-
ever, our POMM based steganalyzer shows significant improvement in performance at the lower embedding
rates compared either Markov scheme. For example, for Bows2 database, Markov324 and Markov486 has a
detection accuracy close to 6% whereas POMM based steganalyzer gave a detection accuracy of 71%.

Our proposed steganalyzer has also performed better than Merged for Outguess and Steghide across
all the databases whereas Merged performs better at lower embedding rates for F5 and JPHide. Both
steganalyzers perform equivalently at higher embedding rates and for detecting Jsteg. For example, the
Merged steganalyzer gave a detection accuracy of 55% for Steghide at 0.5 bpnz for Corel database whereas
our POMM based steganalyzer gave a detection accuracy of 74%. On the other hand, for the same database,
Merged performed better for JPHide at 0.5 bpnz with a detection accuracy of 57% whereas our POMM based
steganalyzer detected 44% of the stego images correctly. And this trend holds across different databases.
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Figure 3.3: Detection accuracy results for different steganalyzers on BOWS2 database
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Figure 3.4: Detection accuracy results for different steganalyzers on Camera database
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Figure 3.5: Detection accuracy results for different steganalyzers on Corel database
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Figure 3.6: Detection accuracy results for different steganalyzers on NRCS database
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3.4 Combining other features with POMM

3.4.1 Experiment-1

Description: With POMM T=5 and Local Histogram described in [53]. Total number of features is 297
(=242+55).
Database: Bows2

Jsteg Outguess F5 Steghide JPHide

Cover 99.58 99.46 90.72 94.88 97.78
0.05 bpc 98.16 96.68 53.28 76.96 78.70
0.10 bpc 99.90 99.94 96.84 91.16 84.67
0.20 bpc 99.98 100.00 100.00 98.86 96.98
0.40 bpc 100.00 - 100.00 99.94 99.94

3.4.2 Experiment-2

Description: With POMM T=5 and Dual Histogram described in [53]. Total number of features is 341
(=242+99).
Database: Bows2

Jsteg Outguess F5 Steghide JPHide

Cover 99.52 99.50 89.82 94.86 98.54
0.05 bpc 98.70 96.52 54.82 76.78 77.68
0.10 bpc 100.00 100.00 96.98 91.28 82.15
0.20 bpc 100.00 100.00 99.98 98.56 95.93
0.40 bpc 100.00 - 100.00 99.94 99.80

3.4.3 Experiment-3

Description: With POMM T=5 and StatMoments described in Chapter 4. Total number of features is 314
(=242+72).
Database: Bows2

Jsteg Outguess F5 Steghide JPHide

Cover 99.28 98.58 0.00 94.10 93.02
0.05 bpc 93.24 89.56 0.00 63.08 69.82
0.10 bpc 99.86 99.50 0.00 80.76 73.47
0.20 bpc 99.96 100.00 0.00 94.10 92.97
0.40 bpc 100.00 - 0.00 99.24 99.42
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3.4.4 Experiment-4

Description: With POMM T=5 and DCT features described in [26]. Total number of features is 265
(=242+23).
Database: Various

NRCS Camera Corel Bows2

Jsteg

Cover 100.00 99.62 99.85 99.48
0.05 bpc 98.90 93.68 99.41 97.32
0.10 bpc 100.00 99.62 100.00 99.84
0.20 bpc 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00

Outguess

Cover 100.00 98.48 99.83 99.60
0.05 bpc 98.48 93.31 97.61 96.38
0.10 bpc 99.58 99.94 100.00 99.96
0.20 bpc 99.83 100.00 100.00 100.00

F5

Cover 92.42 87.67 91.98 91.18
0.05 bpc 55.60 58.66 41.69 58.02
0.10 bpc 97.64 94.94 91.81 97.92
0.20 bpc 99.75 99.30 100.00 100.00
0.40 bpc 99.07 99.30 100.00 99.98

Steghide

Cover 96.04 92.23 95.41 94.74
0.05 bpc 72.87 77.05 71.41 78.58
0.10 bpc 91.15 88.75 89.39 92.28
0.20 bpc 99.07 98.04 99.14 98.94
0.40 bpc 100.00 99.81 100.00 99.92

JPHide

Cover 90.14 89.06 89.17 97.22
0.05 bpc 38.29 76.77 51.48 82.21
0.10 bpc 53.85 81.09 68.92 87.94
0.20 bpc 92.13 93.79 97.75 98.38
0.40 bpc 99.07 99.24 99.93 99.86
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3.4.5 Experiment-5

Description: With POMM T=5 and following DCT features:

• 11 Global Histogram from [53].

• 5 Local Histogram from [26].

• 11 Dual Histogram from [26].

• 1 Variation from [26].

• 2 Blockiness from from [26].

• 25 Cooccurence from [53].

Total number of features is 297(=242+55).
Database: Various

NRCS Camera Bows2

Jsteg

Cover 100.00 99.81 99.58
0.05 bpc 99.24 95.95 97.58
0.10 bpc 100.00 99.68 99.86
0.20 bpc 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00

Outguess

Cover 100.00 98.74 99.68
0.05 bpc 98.48 95.79 96.98
0.10 bpc 99.49 99.94 99.96
0.20 bpc 99.66 100.00 100.00

F5

Cover 93.77 90.52 93.00
0.05 bpc 51.98 54.61 55.74
0.10 bpc 97.81 95.64 98.26
0.20 bpc 100.00 99.43 100.00
0.40 bpc 100.00 99.56 100.00

Steghide

Cover 96.04 92.04 95.18
0.05 bpc 72.37 76.74 78.62
0.10 bpc 89.81 91.15 92.60
0.20 bpc 98.65 98.93 99.22
0.40 bpc 99.41 99.87 99.94

JPHide

Cover 89.81 90.01 97.20
0.05 bpc 38.46 77.91 83.32
0.10 bpc 54.36 82.92 88.76
0.20 bpc 93.23 96.45 98.94
0.40 bpc 99.49 99.30 99.82
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3.4.6 Experiment-6

Description: With POMM T=3 and DCT features described in [26]. Total number of features is 121
(=98+23).
Database: Various

NRCS Camera Corel Bows2

Jsteg

Cover 99.75 99.49 99.90 99.66
0.05 bpc 99.58 97.35 99.54 97.84
0.10 bpc 100.00 99.81 100.00 99.92
0.20 bpc 100.00 99.87 100.00 100.00
0.40 bpc 100.00 96.65 99.95 100.00

Outguess

Cover 100.00 97.79 99.76 99.62
0.05 bpc 98.82 95.60 97.92 96.92
0.10 bpc 100.00 99.81 100.00 99.92
0.20 bpc 100.00 99.93 100.00 100.00

F5

Cover 93.60 89.82 93.99 92.86
0.05 bpc 60.91 58.60 41.25 57.50
0.10 bpc 98.82 96.14 93.01 97.96
0.20 bpc 99.92 99.43 100.00 99.98
0.40 bpc 99.92 99.49 100.00 99.98

Steghide

Cover 96.04 93.24 95.36 95.02
0.05 bpc 76.24 78.70 73.61 79.32
0.10 bpc 93.68 90.64 90.88 92.82
0.20 bpc 99.16 98.55 99.05 99.20
0.40 bpc 100.00 99.87 100.00 99.92

JPHide

Cover 85.93 87.42 88.54 96.86
0.05 bpc 45.14 78.67 54.39 83.50
0.10 bpc 56.48 82.61 68.39 88.40
0.20 bpc 88.41 94.30 96.53 98.38
0.40 bpc 96.95 99.56 99.95 99.80
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Chapter 4

Misc experiments

4.1 23 DCT features proposed in [26]

Database Used: Bows2

Jsteg Outguess F5 Steghide JPHide

Cover 98.56 92.66 93.32 76.90 95.52
0.05 bpc 93.08 70.41 44.38 55.06 82.33
0.10 bpc 99.76 99.16 91.34 67.80 87.14
0.20 bpc 99.90 99.90 99.80 85.46 97.14
0.40 bpc 99.90 - 99.76 98.20 99.94
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4.2 Dual Histogram

Description: Let di,j(k) represents i, j quantized DCT coefficient in kth block. Since every block is of size
8x8, therefore 1 ≤ i, j ≤ 8 and 1 ≤ k ≤ nb where nb are the total number of 8x8 DCT blocks. Then dual
histogram is given as:

gd
i,j =

nb
∑

k=1

δ(d, dij(k))

where δ(x, y) = 1 if x = y and 0 otherwise. We calculate 99 such values by for d ∈ {−5,−4, ..., 4, 5} and
(i, j) ∈ {(2, 1), (3, 1), (4, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (1, 4)}. These are in total 99 features as proposed
by Pevný in [53].

To use calibration, calculate gd
i,j for candidate and its calibrated image and use point wise difference

values as the final feature values.
Database: Bows2

with-calibation without-calibration

Jsteg

Cover 97.82 97.54
0.05 bpc 91.20 93.52
0.10 bpc 96.44 97.16
0.20 bpc 98.70 98.74
0.40 bpc 99.44 99.12

Outguess

Cover 91.94 92.32
0.05 bpc 69.43 67.51
0.10 bpc 98.04 95.60
0.20 bpc 99.88 98.83

F5

Cover 87.12 69.62
0.05 bpc 33.92 33.72
0.10 bpc 74.12 38.76
0.20 bpc 99.36 54.34
0.40 bpc 99.94 83.20

Steghide

Cover 72.48 68.08
0.05 bpc 51.32 50.02
0.10 bpc 60.66 57.76
0.20 bpc 77.16 70.70
0.40 bpc 94.86 87.70

JPHide

Cover 96.90 80.84
0.05 bpc 78.32 19.59
0.10 bpc 82.19 41.76
0.20 bpc 86.06 62.85
0.40 bpc 97.78 87.71
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4.3 Local Histogram

Description: Let hij is the histogram of (i, j) mode, i.e histogram made by collecting DCT coefficients
located at i, j of every 8x8 block. Calculate histogram for modes (i, j) ∈ {(1, 2), (2, 1), (3, 1), (2, 2), (1, 3)}
and use bin values for coefficient l ∈ {−5,−4, ..., 4, 5}. This will result in 55 features as described in [53].
Calibration technique is used in the similar manner as used in the case of Dual Histogram.
Database: Bows2

with-calibation without-calibration

Jsteg

Cover 98.16 98.54
0.05 bpc 88.42 81.10
0.10 bpc 95.96 95.88
0.20 bpc 99.54 99.74
0.40 bpc 99.92 99.98

Outguess

Cover 88.80 89.58
0.05 bpc 57.53 47.91
0.10 bpc 92.90 85.95
0.20 bpc 99.88 97.70

F5

Cover 86.78 68.12
0.05 bpc 35.62 35.50
0.10 bpc 67.38 40.30
0.20 bpc 96.26 57.58
0.40 bpc 99.90 87.74

Steghide

Cover 67.54 61.86
0.05 bpc 49.74 45.66
0.10 bpc 55.88 50.18
0.20 bpc 67.34 57.80
0.40 bpc 85.36 70.56

JPHide

Cover 96.22 89.50
0.05 bpc 76.52 11.27
0.10 bpc 84.99 37.33
0.20 bpc 90.67 80.97
0.40 bpc 99.10 97.65
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4.4 Probability density function moments and Characteristic func-
tion moments

Description: For the modes (i, j) ∈ {(1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1)}, calculate its
probability density function and characteristic function. Then use first four pdf moments and first 4 cf
moments. This will result in 72 features. We finally show results for feature set obtained using calibration

• Using difference between features of candidate and calibrated image.

• Using absolute value of difference between features of candidate and calibrated image.

Database: Bows2

without abs value with abs value

Jsteg

Cover 81.76 78.20
0.05 bpc 46.38 36.88
0.10 bpc 63.74 47.06
0.20 bpc 85.98 65.32
0.40 bpc 97.56 89.20

Outguess

Cover 66.34 62.18
0.05 bpc 40.93 40.45
0.10 bpc 47.98 42.38
0.20 bpc 61.39 48.60

F5

Cover 77.84 62.54
0.05 bpc 27.58 40.18
0.10 bpc 34.90 42.84
0.20 bpc 58.24 53.86
0.40 bpc 88.70 69.64

Steghide

Cover 47.28 87.24
0.05 bpc 54.94 13.62
0.10 bpc 54.66 13.38
0.20 bpc 56.52 13.56
0.40 bpc 57.48 13.56

JPHide

Cover 75.08 64.64
0.05 bpc 57.41 62.96
0.10 bpc 58.20 63.33
0.20 bpc 59.72 63.65
0.40 bpc 68.41 69.37
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4.5 324 Markov based features proposed in [61]

Database: Various

NRCS Camera Corel Bows2

Jsteg

Cover 99.83 98.48 99.61 98.62
0.05 bpc 91.66 89.13 96.41 88.62
0.10 bpc 98.90 98.74 100.00 99.24
0.20 bpc 99.58 99.62 100.00 99.94
0.40 bpc 99.66 99.87 100.00 99.98

Outguess

Cover 97.14 91.09 97.31 96.82
0.05 bpc 76.81 75.46 82.31 78.34
0.10 bpc 98.06 97.94 99.88 99.54
0.20 bpc 99.23 99.46 99.98 100.00

F5

Cover 90.14 84.83 91.54 92.56
0.05 bpc 41.28 36.92 43.11 38.04
0.10 bpc 86.35 69.09 91.42 84.86
0.20 bpc 99.92 95.32 100.00 99.50
0.40 bpc 100.00 99.37 100.00 99.92

Steghide

Cover 91.07 84.64 91.54 92.40
0.05 bpc 54.59 67.76 52.91 56.18
0.10 bpc 73.29 83.75 76.76 76.98
0.20 bpc 93.77 96.46 97.39 95.40
0.40 bpc 98.82 99.62 99.90 99.68

JPHide

Cover 94.86 89.95 96.99 93.44
0.05 bpc 5.75 10.70 3.18 6.82
0.10 bpc 13.97 13.79 11.96 12.14
0.20 bpc 92.05 66.62 93.69 78.13
0.40 bpc 99.75 96.65 99.98 99.36
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4.6 486 Markov based features proposed in [61]

Database: Various

NRCS Camera Corel Bows2

Jsteg

Cover 100.00 99.49 99.88 99.82
0.05 bpc 96.71 94.12 99.61 95.10
0.10 bpc 99.66 99.37 100.00 99.72
0.20 bpc 100.00 99.81 100.00 99.92
0.40 bpc 100.00 100.00 100.00 100.00

Outguess

Cover 99.58 95.45 99.29 98.84
0.05 bpc 91.82 91.46 97.34 92.02
0.10 bpc 100.00 99.48 99.98 99.92
0.20 bpc 100.00 99.93 100.00 100.00

F5

Cover 86.94 87.36 90.42 91.72
0.05 bpc 49.37 36.85 45.41 38.52
0.10 bpc 87.28 76.04 92.82 85.66
0.20 bpc 98.90 98.17 100.00 99.80
0.40 bpc 99.66 99.49 100.00 99.96

Steghide

Cover 90.14 85.34 91.86 93.04
0.05 bpc 57.20 71.43 59.43 62.92
0.10 bpc 77.51 86.28 83.80 83.98
0.20 bpc 94.52 97.47 99.02 97.90
0.40 bpc 99.07 99.81 99.98 99.92

JPHide

Cover 94.19 89.63 96.48 94.46
0.05 bpc 5.92 10.25 3.48 5.57
0.10 bpc 15.16 12.90 12.13 8.80
0.20 bpc 92.05 66.81 94.69 74.42
0.40 bpc 99.75 96.77 100.00 99.28
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4.7 Extended DCT and Calibrated Markov feature proposed in
[53]

Database: Various

NRCS Camera Corel Bows2

Jsteg

Cover 99.92 99.87 99.85 99.64
0.05 bpc 99.16 96.14 99.51 99.10
0.10 bpc 100.00 99.24 100.00 100.00
0.20 bpc 100.00 99.75 100.00 100.00
0.40 bpc 100.00 99.94 100.00 100.00

Outguess

Cover 99.16 98.10 99.32 98.78
0.05 bpc 95.95 93.95 96.58 95.26
0.10 bpc 100.00 100.00 100.00 99.92
0.20 bpc 100.00 100.00 100.00 99.98

F5

Cover 89.30 89.00 87.78 91.82
0.05 bpc 59.06 59.23 54.62 59.64
0.10 bpc 97.81 97.03 95.50 97.78
0.20 bpc 99.58 99.87 100.00 99.96
0.40 bpc 99.49 99.87 100.00 99.98

Steghide

Cover 91.74 89.82 92.91 91.78
0.05 bpc 58.38 69.72 55.50 69.52
0.10 bpc 79.70 85.84 79.55 87.96
0.20 bpc 98.23 97.79 98.22 98.72
0.40 bpc 100.00 99.94 100.00 99.96

JPHide

Cover 85.85 90.20 89.39 97.50
0.05 bpc 50.38 78.92 57.04 82.51
0.10 bpc 72.40 84.69 77.78 90.70
0.20 bpc 95.69 96.52 97.82 98.70
0.40 bpc 98.98 99.43 99.95 99.82
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4.8 POMM2 - 432 features

Description: In this POMM, we work with absolute values of DCT coefficient. We then, take the difference
in three directions and clip the differences between [-2,2]. We then calculate the conditional probabilities
for 0,1,2 given its neighbors. We end up with 216 features (intra). We perform the same operation for each
mode block and average them to obtain another set of 216 features (inter). Following table shows the results
for inter, intra and combined feature set. Calibration is applied by using absolute value of difference between
candidate and calibrated image features value.
Database: Bows2

All Intra Inter

Jsteg

Cover 98.00 96.40 96.72

0.05 bpc 78.78 65.40 68.12

0.10 bpc 98.84 98.36 91.24

0.20 bpc 99.98 99.96 99.16

0.40 bpc 100.00 100.00 100.00

Outguess

Cover 97.54 90.60 98.18

0.05 bpc 79.16 41.47 75.96

0.10 bpc 98.24 91.18 94.46

0.20 bpc 100.00 99.98 99.50

F5

Cover 91.88 91.32 87.80

0.05 bpc 22.66 19.80 26.48

0.10 bpc 67.06 62.44 57.90

0.20 bpc 99.80 99.82 97.28

0.40 bpc 100.00 99.98 99.76

Steghide

Cover 93.82 77.02 94.34

0.05 bpc 63.58 35.76 62.22

0.10 bpc 79.30 46.00 77.18

0.20 bpc 93.06 65.04 90.34

0.40 bpc 99.06 92.06 97.32

JPHide

Cover 87.82 90.34 82.12

0.05 bpc 68.94 56.39 59.80

0.10 bpc 71.99 56.16 62.19

0.20 bpc 87.06 64.35 78.01

0.40 bpc 98.72 93.06 94.09
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4.9 POMM3-243 features

Description: POMM-3 is defined as follows. We take the DCT coefficient array and clip the values between
-T to T. After that, we build 3 differences array in horizontal, vertical and diagonal direction, similar to Shi
paper. We then clip the values in all three different arrays between -T1 to T1. For this experiment, we have
T=4 and T1=1. We end up 243 intra block features. We just look at the accuracy results obtained due to
intra block. (There is no calibration involved).
Database: Bows2.

Jsteg Outguess F5 Steghide JPHide

Cover 99.20 91.11 85.67 77.21 88.55
0.05 bpc 91.12 57.55 24.36 47.10 10.13
0.10 bpc 99.36 95.56 57.82 57.34 14.37
0.20 bpc 99.94 99.76 98.82 74.06 72.72
0.40 bpc 99.98 - 99.98 93.54 98.78

In order to explore this model further, we use both inter and intra block probabilities, which results in
486 total features. We then apply calibration and use absolute value of difference between candidate and
calibrated image features value.

Jsteg Outguess F5 Steghide JPHide

Cover 99.28 97.72 92.12 88.42 85.32
0.05 bpc 88.90 83.60 17.08 42.96 70.78
0.10 bpc 99.68 99.32 40.66 61.10 70.29
0.20 bpc 99.96 99.98 96.60 85.76 81.17
0.40 bpc 100.00 - 100.00 98.88 98.04
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4.10 POMM4 - 270 features

Description:POMM-4 is defined as follows. We first take the absolute of DCT array. After that we calculate,
the conditional probability p(ai,j ||ai,j − ai−1,j |, |ai,j − ai−1,j−1|, |ai,j − ai,j−1|). The differences are clipped
to experimental parameter δ. In this experiment, δ is set to 2. We also, just look at the joint probability for
0 ≤ ai,j ≤ 4. So, in total we have 5*3*3*3 = 135 conditional probability. We do this for both inter and intra
block and also applying calibration technique. In total we end up with 270 probabilities. We then apply
calibration and use absolute value of difference between candidate and calibrated image features value.
Database: Bows2.

All Intra Inter

Jsteg

Cover 98.48 97.66 97.30
0.05 bpc 82.94 74.34 76.82
0.10 bpc 99.44 99.04 98.90
0.20 bpc 100.00 99.94 99.86
0.40 bpc 100.00 99.98 99.96

Outguess

Cover 94.80 91.84 92.72
0.05 bpc 61.13 40.07 60.39
0.10 bpc 97.06 92.12 93.76
0.20 bpc 99.94 100.00 99.40

F5

Cover 91.72 93.36 90.40
0.05 bpc 38.46 18.94 36.78
0.10 bpc 88.72 61.50 84.96
0.20 bpc 99.90 99.76 99.84
0.40 bpc 99.98 99.94 100.00

Steghide

Cover 85.82 77.08 83.76
0.05 bpc 47.70 37.58 47.42
0.10 bpc 63.40 46.08 61.94
0.20 bpc 86.72 66.76 82.70
0.40 bpc 98.88 93.06 96.52

JPHide

Cover 90.36 89.60 84.46
0.05 bpc 59.17 57.73 48.02
0.10 bpc 61.97 58.59 49.85
0.20 bpc 86.38 74.06 79.99
0.40 bpc 99.66 98.50 98.86
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4.11 POMM 5-6

In this section, we describe the proposed model and feature set generation for steganalysis of JPEG images.
We derive features directly from the quantized DCT blocks to attack the steganography algorithm. Our
justification is that many steganographic algorithms embed the payload directly in the quantized DCT
coefficients. Let dir be a particular direction, then the hierarchial pyramid corresponds to dir is a set of
levels {Lk

dir : k ≥ 0}. We define the level set corresponding to four different direction: horizontal (Lh),
vertical (Lv), major diagonal (Ld) and minor diagonal (Lm) as follows:

Lk
h(i, j) = Lk−1

h (i, j) − Lk−1
h (i, j + 1)

Lk
v(i, j) = Lk−1

v (i, j) − Lk−1
v (i + 1, j)

Lk
d(i, j) = Lk−1

d (i, j) − Lk−1
d (i + 1, j + 1)

Lk
m(i, j) = Lk−1

m (i + 1, j) − Lk−1
m (i, j + 1)

where k ≥ 1. If D is the quantized DCT coefficient array corresponding to a given JPEG image, then

L0
h = L0

v = L0
d = L0

m = D

This completely defines the differential pyramid in all four different directions. Note that if Lk−1
dir lies

within the range [−T, T ], then from the defintion of Lk
dir, ∀w ∈ Lk

dir, ∃u, v ∈ Lk−1
dir such that w = u − v.

Since u, v ∈ [−T, T ], therefore w ∈ [−2T, 2T ]. Therefore the range of elements in Lk
dir is [−2T, 2T ]. We

now use Markov process to model the adjacent levels in this pyramid. Let the value at Lk
dir(i, j) depends on

coefficients from its immediate lower neighborhood Lk−1
dir . This set of coefficients is known as lower adjacent

neighbors of Lk
dir(i, j), denoted by adj(Lk

dir(i, j)). Different neighborhoods can be fitted on this differential
pyramid to model different problem. We now define the transition probability set for level k in a particular

direction dir given by pk
dir = {pk

dir(
−→
V |w) : −2T ≤ w ≤ 2T, ∀v ∈

−→
V − T ≤ v ≤ T } for k ≥ 1 where

pk
dir(

−→
V |w) =

m−1
∑

i=1

n−1
∑

j=1

δ(adj(Lk
m(i, j)) =

−→
V )

δ(Lk
m(i, j) = w)

where Lk−1
dir is of the size mxn and

δ(A = B) =

{

1 if A = B

0 otherwise

In this paper, we focus on a simple neighborhood given as follows:

adj(Lk
h(i, j)) = (Lk−1

h (i, j), Lk−1
h (i, j + 1))

adj(Lk
v(i, j)) = (Lk−1

v (i, j), Lk−1
v (i + 1, j))

adj(Lk
d(i, j)) = (Lk−1

d (i, j), Lk−1
d (i + 1, j + 1))

adj(Lk
m(i, j)) = (Lk−1

m (i + 1, j), Lk−1
m (i, j + 1))

We believe (and further show in the experimental section) that this will effectively model DCT coefficient
array to solve the problem of steganalysis based on following intution. During embedding, values are changed
at L0 either randomly or sequentially using LSB matching or LSB replacement. Therefore, it will distort the
distribution of the difference between two adjacent coefficients at L0. Hence the probabilities of occuring of
elements will change at L1. This effect will further be to higher levels, hence creating a ripple effect. The
level set probability will effectively capture the distribution of pattern of adjacent coefficients in Lk−1 given
their difference value. Since the cardinality of set pk

dir plays an important role in determining the size of
feature space for steganalyzer, we now prove the following claim for the given neighborhood .
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All Intra Inter POMM6

Jsteg

Cover 99.10 99.00 98.38 99.30
0.05 bpc 93.96 93.88 85.24 94.94
0.10 bpc 99.84 99.74 98.10 99.74
0.20 bpc 99.96 99.96 99.88 99.98
0.40 bpc 100.00 100.00 100.00 100.00

Outguess

Cover 99.14 96.04 98.60 95.80
0.05 bpc 89.12 45.55 89.48 65.07
0.10 bpc 99.48 97.54 99.10 98.98
0.20 bpc 100.00 99.90 99.96 99.98

F5

Cover 90.48 92.56 87.88 91.24
0.05 bpc 30.96 20.36 32.32 26.52
0.10 bpc 77.94 61.38 70.32 72.16
0.20 bpc 99.92 99.84 99.38 99.80
0.40 bpc 99.98 99.92 100.00 99.96

Steghide

Cover 93.58 76.70 92.14 77.02
0.05 bpc 64.80 33.64 67.76 36.78
0.10 bpc 81.66 41.28 82.98 46.88
0.20 bpc 94.20 59.46 94.04 68.14
0.40 bpc 99.30 89.60 98.76 94.74

JPHide

Cover 92.02 90.94 85.06 92.06
0.05 bpc 71.51 50.39 69.58 57.25
0.10 bpc 74.81 53.62 73.27 63.23
0.20 bpc 93.65 86.26 88.78 90.25
0.40 bpc 99.44 99.38 98.14 99.64
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Claim: Let dir be any direction and let k ≥ 1. If Lk−1
dir lies within the range [−T, T ], then |pk

dir| = (2T +1)2.

Proof: ∀u ∈ Lk
dir, the possible number of pairs in Lk−1

dir that can produce u will be 2T − (|u| − 1). Since
u ∈ [−2T, 2T ], therefore

|pk
dir| =

2T
∑

i=−2T

2T − (|i| − 1)

= 2 ∗
2T ∗ (2T + 1)

2
+ (2T + 1)

= (2T + 1)2

Finally, we define the level transition probabilty set for an image as the average of the level transition

probability set in all the possible four directions i.e {pk : k ≥ 1} where pk =
pk

h
+pk

v
+pk

d
+pk

m

4 . Let Ic be the
calibrated version of given image Io which is produced by decompressing Io to the spatial domain with
its quantization matrix Qo, cropping 4 pixels from each side in the spatial domain, and then compressing
image with Qo. The spatial shift by 4 pixels and subsequent recompression effectively breaks the statistical
relationships of the quantized DCT coefficients because the second compression ”does not see” the first
compression. As a result, certain macroscopic properties, such as the statistics of DCT coefficients, remain
largely unchanged after calibration. More information on calibration can be found in [?, ?, ?]. If we let Dc

represents the JPEG DCT array of the calibrated image, then we define calibrated level probability set as
abs(pk

o −pk
c ). Figure 1 shows the level transition probability set obtained by using level transition probability

set with k = 1 and L0
h = L0

v = L0
d = L0

m = D′ where D′ is the DCT coefficient array with values clipped
between [−5, 5]. It is easy to evaluate the possible number of features in this case is 121.

So we do couple of things. We try evaluating performance of 121 features extracted from DCT array.
We also evaluate performance using 2 level with in total 562 features. And then we also try evaluating using
inter and intra block features 121+121 = 242 features. Results are shown below
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4.12 POMM 7

Let dir be a particular direction, then the hierarchial pyramid corresponds to dir is a set of levels {Lk
dir : k ≥

0}. We define the level set corresponding to four different direction: horizontal (Lh), vertical (Lv), major
diagonal (Ld) and minor diagonal (Lm) as follows:

Lk
h(i, j) = Lk−1

h (i, j) − Lk−1
h (i, j + 1)

Lk
v(i, j) = Lk−1

v (i, j) − Lk−1
v (i + 1, j)

Lk
d(i, j) = Lk−1

d (i, j) − Lk−1
d (i + 1, j + 1)

Lk
m(i, j) = Lk−1

m (i + 1, j) − Lk−1
m (i, j + 1)

where k ≥ 1. If D is the quantized DCT coefficient array corresponding to a given JPEG image, then

L0
h = L0

v = L0
d = L0

m = D

This completely defines the differential pyramid in all four different directions. After this we build a POMM

All Intra Inter

Jsteg

Cover 98.68 98.06 97.72
0.05 bpc 87.20 82.16 86.24
0.10 bpc 99.60 99.20 99.20
0.20 bpc 100.00 99.98 99.94
0.40 bpc 100.00 100.00 100.00

Outguess

Cover 98.36 93.86 97.16
0.05 bpc 77.76 45.47 77.96
0.10 bpc 98.22 94.24 97.00
0.20 bpc 99.98 99.84 99.94

F5

Cover 90.94 91.56 87.50
0.05 bpc 36.88 27.24 35.78
0.10 bpc 87.10 75.00 78.80
0.20 bpc 99.86 99.80 99.68
0.40 bpc 99.96 99.94 99.98

Steghide

Cover 95.00 83.24 93.62
0.05 bpc 61.56 37.62 63.92
0.10 bpc 79.02 49.30 78.84
0.20 bpc 93.32 71.42 91.58
0.40 bpc 99.30 94.82 98.38

JPHide

Cover 94.76 93.46 89.24
0.05 bpc 70.48 58.41 74.15
0.10 bpc 75.00 65.08 76.72
0.20 bpc 94.59 92.91 90.43
0.40 bpc 99.80 99.72 98.70

on the above differential pyramid as follows. Let a coefficient at Lk(i, j) is dependent on its neighbors
adj(Lk(i, j)) ∈ Lk+1(i, j). We define the adjacency as:

adj(Lk
h(i, j)) = (Lk+1

h (i, j − 1), Lk+1
h (i, j))

adj(Lk
v(i, j)) = (Lk+1

v (i − 1, j), Lk−1
v (i, j))

adj(Lk
d(i, j)) = (Lk+1

d (i − 1, j − 1), Lk+1
d (i, j))
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adj(Lk
m(i, j)) = (Lk+1

m (i − 1, j), Lk+1
m (i, j − 1))

We now define the transition probability set for level k in a particular direction dir given by pk
dir =

{pk
dir(w|

−→
V ) : 0 ≤ w ≤ T, ∀v ∈

−→
V − T ≤ v ≤ T } for k ≥ 1 where

pk
dir(w|

−→
V ) =

m−1
∑

i=1

n−1
∑

j=1

δ(Lk
dir(i, j) = w, adj(Lk

dir(i, j)) =
−→
V )

δ(adj(Lk
dir(i, j)) =

−→
V )

where Lk−1
dir is of the size mxn and

δ(A = B) =

{

1 if A = B

0 otherwise

We now calculate the level transition probability set for k=0 and D formed from the magnitude of DCT
coefficient array clipped between [0,5]. These are 227 features. 216 conditional probabilities of elements in
L1 given its neighbor at L0. So, we calculate these probabilites from both inter and intra block features. In
total , we have 227*2 = 454 features.
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4.13 POMM8

Description: In this POMM, we explore the inter and intra block dependencies together using different
scanning orders for inter and intra block. We use the absolute values of DCT coefficient and clip them
between [0,5] before we use them. We use different intra block scanning order and expand each block in a
column vector of size 63 (excluding DC coefficients). We then employ different inter block scanning order to
arrange all column vectors to make a matrix of size 63 x Nb where Nb is the number of blocks in image.

Finally we apply calibration and use the absolute value of the difference between candidate image and
calibrated image as final feature.
Database: Bows2

Intra Block Column Scan

Here we use different inter block scanning and obtain the results as follows:

Table 4.1: Detection Accuracy results for different steganalyzer

ColumnColumn ColumnHilbert ColumnRow ColumnSlalom

Jsteg

Cover 97.12 97.00 97.72 98.12
0.05 bpc 79.84 79.22 78.42 74.48
0.10 bpc 98.80 99.08 98.90 98.52
0.20 bpc 99.64 99.86 99.80 99.90
0.40 bpc 99.86 99.96 99.96 100.00

Outguess

Cover 93.52 93.60 94.90 94.72
0.05 bpc 61.69 61.93 57.07 58.71
0.10 bpc 98.32 98.14 97.30 97.58
0.20 bpc 99.96 99.94 99.96 99.96

F5

Cover 89.18 89.12 88.96 89.44
0.05 bpc 28.44 26.40 26.46 27.20
0.10 bpc 69.68 67.56 68.36 68.98
0.20 bpc 99.58 99.84 99.78 99.88
0.40 bpc 99.82 100.00 100.00 99.98

Steghide

Cover 85.50 85.40 86.60 86.72
0.05 bpc 45.22 45.16 43.08 44.56
0.10 bpc 60.58 61.84 59.18 59.56
0.20 bpc 85.16 85.44 83.64 83.92
0.40 bpc 99.10 98.80 98.76 98.88

JPHide

Cover 84.82 85.18 84.54 83.60
0.05 bpc 43.69 42.93 40.75 42.45
0.10 bpc 45.18 43.84 43.20 44.36
0.20 bpc 68.54 67.75 66.79 66.43
0.40 bpc 98.10 98.32 98.68 98.66
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Intra Block Row Scan

Table 4.2: Detection Accuracy results for different steganalyzer

RowColumn RowHilbert RowRow RowSlalom

Jsteg

Cover 98.02 97.60 97.64 97.54
0.05 bpc 78.10 77.40 75.92 77.78
0.10 bpc 98.64 98.68 98.58 98.70
0.20 bpc 99.82 99.84 99.82 99.78
0.40 bpc 99.96 99.92 99.98 99.94

Outguess

Cover 94.16 94.74 93.44 95.08
0.05 bpc 55.63 56.33 60.01 55.41
0.10 bpc 96.90 96.34 97.00 97.44
0.20 bpc 99.88 99.90 99.86 99.98

F5

Cover 90.70 90.16 89.22 89.98
0.05 bpc 24.40 23.96 27.60 27.68
0.10 bpc 63.94 66.42 70.96 71.18
0.20 bpc 99.68 99.78 99.76 99.90
0.40 bpc 99.98 99.96 100.00 99.98

Steghide

Cover 86.14 86.06 85.62 85.40
0.05 bpc 41.36 42.60 42.16 43.80
0.10 bpc 56.56 59.22 59.00 59.60
0.20 bpc 80.92 81.96 82.72 84.50
0.40 bpc 98.24 98.10 98.34 98.40

JPHide

Cover 81.64 82.16 86.40 84.08
0.05 bpc 33.39 32.38 29.28 31.82
0.10 bpc 38.25 37.95 34.64 37.97
0.20 bpc 69.22 71.66 70.64 74.12
0.40 bpc 98.88 99.48 99.48 99.64
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Intra Block ZigZag Scan

ZigzagColumn ZigzagHilbert ZigzagRow ZigzagSlalom

Jsteg

Cover 97.90 97.94 97.78 97.38
0.05 bpc 82.36 82.22 82.80 82.16
0.10 bpc 98.54 98.90 99.04 99.02
0.20 bpc 99.58 99.78 99.78 99.80
0.40 bpc 99.88 99.94 99.90 99.92

Outguess

Cover 94.12 93.62 93.72 93.22
0.05 bpc 57.09 60.35 59.97 62.47
0.10 bpc 96.52 97.14 97.24 97.28
0.20 bpc 99.82 99.82 99.78 99.74

F5

Cover 92.04 89.28 87.94 89.64
0.05 bpc 17.56 22.36 27.34 24.90
0.10 bpc 52.74 63.02 70.24 67.80
0.20 bpc 99.60 99.82 99.70 99.86
0.40 bpc 100.00 100.00 99.98 100.00

Steghide

Cover 84.72 85.16 85.00 85.74
0.05 bpc 45.80 45.52 46.00 45.92
0.10 bpc 61.16 61.08 62.76 62.50
0.20 bpc 84.90 85.44 85.66 86.70
0.40 bpc 98.44 98.80 99.12 99.00

JPHide

Cover 81.68 85.20 85.52 84.78
0.05 bpc 39.88 35.75 37.00 37.22
0.10 bpc 41.41 37.03 38.63 37.63
0.20 bpc 60.12 58.18 57.50 57.84
0.40 bpc 97.57 98.16 98.36 98.44

Based on analysis of the above data, it seems that ColumnColumn, RowSlalom and ZigZagRow scanning
order gives good results. We end up with two possiblities: Either we take the average of all the three feature
set to get another feature set of 216 or we use the together to form a feature set of size 216*3=648. Since
the second option results in very high dimensionality of feature set, we will use the first option to derive our
final POMM set of 216 features. Results are shown in Table 4.3.

Table 4.3: Detection Accuracy obtained by average of ColumnColumn, RowSlalom and ZigZagRow

Jsteg Outguess F5 Steghide JPHide

Cover 98.44 96.62 91.90 91.82 87.98
0.05 bpc 88.96 75.34 36.96 52.22 36.58
0.10 bpc 99.08 99.46 88.78 72.64 42.32
0.20 bpc 99.86 99.96 99.96 94.42 81.07
0.40 bpc 99.96 - 100.00 99.62 99.58
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4.14 Steganalyzer based on Joint Probability

Description: In this section, we explore a new feature set based on joint probability. For every i, j location
in DCT array, we calculate

p(qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) =
#(qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)

(r − 1) ∗ (c − 1)
(4.1)

where r is the number of rows in the array and c is the number of columns the array. Note that we
ignore the locations where the neighborhood is not defined. Therefore, in our case, possible locations are
{(i, j) : i ∈ {2, ..., r}, j ∈ {2, ..., c}}. Since qi,j ∈ {0, 1, ...1024}, the difference values will between any two
dct coefficient will range from {−1024, .., 0, .., 1024}, in total 2049 such possible values. This will be huge
and computabily difficult. Therefore, we clip the difference values in range {−T, T }. In order to calculate
the above conditional probability, we count the number of patterns (qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)
clipped between {−T, T }. For this experiment, we set T = 2. Therefore, we have 125 intra block and 125
inter block features. In total, we have 250 Joint probability as features (JPF). Database: UCID

Table 4.4: Accuracy results using Joint Probability with 3 neighborhood

250 JPF 250 JPF + 25 Coocurrence
bpc TPR FPR AR TPR FPR AR

Jsteg

0.05 86.2481 4.03587 91.1061 90.284 2.09268 94.0957
0.1 99.4021 4.03587 97.6831 99.8505 2.09268 98.8789
0.2 100 4.03587 97.9821 100 2.09268 98.9537
0.4 100 4.03587 97.9821 100 2.09268 98.9537

OutGuess

0.05 72.7952 5.38117 83.707 78.9238 2.69058 88.1166
0.1 99.5516 5.38117 97.0852 99.701 2.69058 98.5052
0.2 100 5.38117 97.3094 100 2.69058 98.6547

F5

0.05 30.4933 8.66966 60.9118 31.3901 7.7728 61.8087
0.1 67.4141 8.66966 79.3722 73.2436 7.7728 82.7354
0.2 99.5516 8.66966 95.441 99.8505 7.7728 96.0389
0.4 100 8.66966 95.6652 100 7.7728 96.1136

StegHide

0.05 56.3528 15.2466 70.5531 60.6876 12.2571 74.2152
0.1 70.852 15.2466 77.8027 74.5889 12.2571 81.1659
0.2 91.6293 15.2466 88.1913 93.722 12.2571 90.7324
0.4 99.5516 15.2466 92.1525 100 12.2571 93.8714

JPHS

0.05 51.5695 9.71599 70.9268 41.2556 5.08221 68.0867
0.1 54.5695 9.71599 72.1973 47.8326 5.08221 71.3752
0.2 82.6607 9.71599 86.4723 84.9028 5.08221 89.9103
0.4 98.9813 9.71599 94.3561 99.6604 5.08221 97.1383
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4.15 Accuracy results using Joint Probability with 3 neighbhor-
hood and Quantized DCT coefficient

Description: In this section, we extend joint probabilities introduced in section 2.5. For every i, j location
in DCT array, we calculate

p(qij , qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) =
#(qij , qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)

(r − 1) ∗ (c − 1)
(4.2)

where r is the number of rows in the array and c is the number of columns the array. Note that we
ignore the locations where the neighbhorhood is not defined. Therefore, in our case, possible locations are
{(i, j) : i ∈ {2, ..., r}, j ∈ {2, ..., c}}. Since qi,j ∈ {0, 1, ...1024}, the difference values will between any two dct
coefficient will range from {−1024, .., 0, .., 1024}, in total 2049 such possible values. This will be huge and
computabily difficult. Therefore, we clip the difference values in range {−T, T }. Since qi,j ∈ {0, 1, ...1024},
we will have in total 1025 ∗ (2T + 1)3 number of such conditional probability. We will just look at the joint
probability by clipping qi,j ∈ {0, 1, ...T1}. Therefore, we will have (T 1+1)∗ (2T +1)3 such joint probability.
Since some of them are not possible, they will further be reduced. In this experiment, we set T 1 = 2 and
T = 2. So it will be in total 375 features. But since some of them are not possible, it will reduce to 216
features. We combine both inter and intra JPF. Database: UCID

Table 4.5: Using 432 Joint Probability as Features

bpc TPR FPR AR

Jsteg

0.05 91.6293 2.09268 94.7683
0.1 100 2.09268 98.9537
0.2 100 2.09268 98.9537
0.4 99.701 2.09268 98.8042

OutGuess
0.05 70.5531 6.12855 82.2123
0.1 98.6547 6.12855 96.2631
0.2 100 6.12855 96.9357

F5

0.05 42.7504 12.855 64.9477
0.1 82.9596 12.855 85.0523
0.2 100 12.855 93.5725
0.4 100 12.855 93.5725

StegHide

0.05 62.0329 14.2003 73.9163
0.1 77.728 14.2003 81.7638
0.2 94.6188 14.2003 90.2093
0.4 99.8505 14.2003 92.8251

JPHS

0.05 28.2511 10.7623 58.7444
0.1 41.2556 10.7623 65.2466
0.2 87.5934 10.7623 88.4155
0.4 99.8302 10.7623 94.1971

It is also interesting to see how the moments in general perform. We calculate centralized first 4 moments.
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Table 4.6: Using 32 Joint Probability Moments as Features

bpc TPR FPR AR

Jsteg

0.05 51.8685 13.9013 68.9836
0.1 86.6966 13.9013 86.3976
0.2 97.9073 13.9013 92.003
0.4 99.4021 13.9013 92.7504

OutGuess
0.05 41.8535 11.2108 65.3214
0.1 76.6816 11.2108 82.7354
0.2 98.0568 11.2108 93.423

F5

0.05 35.725 10.1644 62.7803
0.1 75.7848 10.1644 82.8102
0.2 99.701 10.1644 94.7683
0.4 100 10.1644 94.9178

StegHide

0.05 45.8894 25.8595 60.0149
0.1 54.2601 25.8595 64.2003
0.2 66.8161 25.8595 70.4783
0.4 84.006 25.8595 79.0732

JPHS

0.05 60.5381 19.133 70.7025
0.1 68.7593 19.133 74.8132
0.2 87.8924 19.133 84.3797
0.4 98.8115 19.133 89.2687

4.16 Steganalyzer based on Conditional Probability from Par-
tially Ordered Markov Model

POMM model calculates the conditional probability p(qij |qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) where qi,j

is the absolute value of DCT coefficient at i, j. This probability is gives as

p(qi,j |qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) =
p(qij , qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)

p(qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)
(4.3)

Since qi,j ∈ {0, 1, ...1024}, the difference values will between any two dct coefficient will range from
{−1024, .., 0, .., 1024}, in total 2049 such possible values. This will be huge and computabily difficult. There-
fore, we clip the difference values in range {−T, T }. In order to calculate the above conditional probability,
we count the number of patterns (qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) clipped between {−T, T }. Then,
the probability is given as:

p(qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) =
#(qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)

(r − 1) ∗ (c − 1)
(4.4)

where r is the number of rows in the array and c is the number of columns the array. Note that we
ignore the locations where the neighbhorhood is not defined. Therefore, in our case, possible locations
are {(i, j) : i ∈ {2, ..., r}, j ∈ {2, ..., c}}. Once this probability has been counted, we need to count the
p(qij , qi,j −qi,j−1, qi,j −qi−1,j−1, qi,j −qi−1,j). Note that for every value of qi,j , there will be in total (2T +1)3

number of such patterns, since every difference value is clipped between {−T, T }. Furthermore, it is trivial
to note that no such patterns will occuer when any of the difference value within the 3 neighbhorhood is
greater than qi,j . For example, if qi,j = 0, then only those patterns will occur where qi,j − qi,j−1 ≤ 0 and
qi,j − qi−1,j−1 ≤ 0 and qi,j − qi−1,j ≤ 0

p(qij , qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) =
#(qij , qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)

(r − 1) ∗ (c − 1)
(4.5)
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Hence

p(qi,j |qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j) =
#(qij , qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)

#(qi,j − qi,j−1, qi,j − qi−1,j−1, qi,j − qi−1,j)
(4.6)

Since qi,j ∈ {0, 1, ...1024}, we will have in total 1025 ∗ (2T + 1)3 number of such conditional probability. We
will just look at the conditional probability where qi,j ∈ {0, 1, ...T1}. There are two ways to restrict qi,j :

• By clipping values greater than T to T

• By ignoring values greater than T

Table 2.11 shows the accuracy results based on conditional probability from POMM. For this experiment,
we set T = 2 and T 1 = 2. In total,we have 216 intra block conditional and 216 inter block conditional
probability.

Table 4.7: Accuracy results based on conditional probability from POMM

By clipping By ignoring
bpc TPR FPR AR TPR FPR AR

Jsteg

0.05 80.867 1.04634 89.9103 87.8924 1.04634 93.423

0.1 99.2526 1.04634 99.1031 99.701 1.04634 99.3274

0.2 99.701 1.04634 99.3274 99.701 1.04634 99.3274

0.4 99.5516 1.04634 99.2526 99.701 1.04634 99.3274

OutGuess

0.05 76.5321 3.13901 86.6966 75.1868 2.69058 86.2481
0.1 98.5052 3.13901 97.6831 98.8042 2.69058 98.0568

0.2 100 3.13901 98.4305 100 2.69058 98.6547

F5

0.05 29.8954 4.78326 62.5561 29.8954 6.12855 61.8834
0.1 70.5531 4.78326 82.8849 71.3004 6.12855 82.5859
0.2 99.2526 4.78326 97.2347 98.9537 6.12855 96.4126
0.4 100 4.78326 97.6084 99.8505 6.12855 96.861

StegHide

0.05 54.559 7.62332 73.4679 60.8371 8.52018 76.1584

0.1 73.6921 7.62332 83.0344 80.568 8.52018 86.0239

0.2 92.9746 7.62332 92.6756 94.7683 8.52018 93.1241

0.4 99.701 7.62332 96.0389 99.701 8.52018 95.5904

JPHS

0.05 52.1674 14.9477 68.6099 50.3737 10.3139 70.0299

0.1 62.0329 14.9477 73.5426 62.7803 10.3139 76.2332

0.2 89.9851 14.9477 87.5187 91.1809 10.3139 90.4335

0.4 100 14.9477 92.0509 100 10.3139 94.5151

Since overall, we get higher accuracy by ignoring the values greater than T , we are going to further
analyse this model by separating inter and intra block conditional probability.

There are several variations possible here. The variable parameters to experiemnt are:

• Change the Intra Block features : Right now, we are looking at DCT coefficient as one big array to
calculate intra block features. In this case, we calculate Intra block features from each 8x8 block and
then average them out to get an estimate of overall intra block conditional probability.

• L1 Norm: The above results are produced by using the difference of feature value of candidate and its
calibrated image: We can either work with:

– Absolute value of L1 Norm.

– Do not take L1 norm and work with features evaluated from candidate image itself.

Following table shows the results obtained by calculating intra block features from each 8x8 block and
then average them out to get an estimate of overall intra block conditional probability. We also work with
absolute value of L1 Norm.
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Table 4.8: Accuracy results of Inter and Intra block based on conditional probability from POMM

216 Inter 216 Intra
bpc TPR FPR AR TPR FPR AR

Jsteg

0.05 77.5785 5.08221 86.2481 83.4081 4.03587 89.6861
0.1 98.5052 5.08221 96.7115 99.4021 4.03587 97.6831
0.2 99.701 5.08221 97.3094 99.701 4.03587 97.8326
0.4 100 5.08221 97.4589 99.701 4.03587 97.8326

OutGuess

0.05 71.7489 3.8864 83.9312 57.8475 6.87593 75.4858
0.1 95.3662 3.8864 95.7399 95.2167 6.87593 94.1704
0.2 99.8505 3.8864 97.9821 100 6.87593 96.562

F5

0.05 28.6996 11.3602 58.6697 26.3079 5.8296 60.2392
0.1 59.6413 11.3602 74.1405 68.9088 5.8296 81.5396
0.2 95.2167 11.3602 91.9283 99.2526 5.8296 96.7115
0.4 99.701 11.3602 94.1704 100 5.8296 97.0852

StegHide

0.05 53.2138 10.4634 71.3752 54.559 17.7877 68.3857
0.1 69.6562 10.4634 79.5964 66.0688 17.7877 74.1405
0.2 88.9387 10.4634 89.2377 86.0987 17.7877 84.1555
0.4 96.7115 10.4634 93.1241 98.5052 17.7877 90.3587

JPHS

0.05 54.1106 26.009 64.0508 36.1734 10.3139 62.9297
0.1 63.0792 26.009 68.5351 43.9462 10.3139 66.8161
0.2 80.867 26.009 77.429 83.4081 10.3139 86.5471
0.4 95.7555 26.009 84.1812 99.4907 10.3139 94.2766

4.16.1 POMM on difference array of DCT coefficients

In this case, we use the 4 difference array calculated from dct array in Shi paper. On each array, we fit the
POMM. We calculate the conditional probability p(qi,j |adji,j). Before calculating this, we also clip the value
of DCT values between {2, 2}. Therefore in total, we will have 625 conditional probability in each direction.
We calibrate feature values in each direction by taking absolute value of difference between candidate and
its calibrated image. Since we have 4 direction, it will result in 625 ∗ 4 number of features. Therefore to
reduce the feature space, we take the average of the feature values in each direction, and therefore reducing
it to just 625. Note that we are not calculating these conditional probability on mode images.

Table 4.9: Accuracy results by fitting POMM on differences array instead computed in Shi paper

bpc TPR FPR AR

Jsteg

0.05 36.4723 6.72646 64.8729
0.1 87.7429 6.72646 90.5082
0.2 99.701 6.72646 96.4873
0.4 100 6.72646 96.6368

OutGuess
0.05 43.1988 8.96861 67.1151
0.1 89.2377 8.96861 90.1345
0.2 100 8.96861 95.5157

F5

0.05 15.6951 12.855 51.42
0.1 28.6996 12.855 57.9223
0.2 86.9955 12.855 87.0703
0.4 99.8505 12.855 93.4978

StegHide

0.05 39.6114 21.5247 59.0433
0.1 47.3842 21.5247 62.9297
0.2 65.7698 21.5247 72.1226
0.4 89.5366 21.5247 84.006

JPHS

0.05 35.5755 7.7728 63.9013
0.1 35.1271 7.7728 63.6771
0.2 44.843 7.7728 68.5351
0.4 95.7555 7.7728 93.8792
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4.16.2 Working with absolute values of differences

In this section, we work with the absolute values of differences, and therefore clip them between {0, , ., T}.
For this experiment, we take T=3 and T1 = 3, and therefore we will have 256 features.

Table 4.10: Using Inter and Intra block conditional probability as features with absolute value of difference

bpc TPR FPR AR

Jsteg

0.05 84.6039 1.34529 91.6293
0.1 99.2526 1.34529 98.9537
0.2 99.701 1.34529 99.1779
0.4 99.701 1.34529 99.1779

OutGuess
0.05 76.5321 2.69058 86.9208
0.1 98.6547 2.69058 97.9821
0.2 100 2.69058 98.6547

F5

0.05 28.849 7.7728 60.5381
0.1 71.4499 7.7728 81.8386
0.2 99.1031 7.7728 95.6652
0.4 100 7.7728 96.1136

StegHide

0.05 65.9193 10.0149 77.9522
0.1 80.4185 10.0149 85.2018
0.2 95.0673 10.0149 92.5262
0.4 99.701 10.0149 94.843

JPHS

0.05 55.3064 7.32436 73.991
0.1 66.8161 7.32436 79.7459
0.2 94.7683 7.32436 93.722
0.4 99.8302 7.32436 96.0254
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Chapter 5

CANVASS - A STEGANOGRAPHIC
FORENSIC TOOL FOR JPEG
IMAGES

There is a growing concern within the community that steganography is being used for illicit purposes. The
New York Times, USA Today and United States Institute of Peace have reported that terrorists may be us-
ing steganography and cryptography on the web as a means of covert communication [36, 42, 65]. A recent
report from National Institute of Justice encourages investigators to look for steganographic information
while dealing with child abuse or exploitation and terrorism cases [1]. While steganalysis algorithms are
abound in the academic literature, there are few software programs that address the needs of local police
departments who perform computer forensic functions for steganalysis.

Two major stego-detection tools in existence today are StegoSuite and StegDetect. StegoSuite was
developed by WetStone Technologies for the U.S. Air Force. This software is expensive and hence is not
readily available to state police forensics labs whose budget does not allow purchase of these expensive
software. In 2001, Neil Provos developed StegDetect [56] to perform steganalysis on suspected stego images.
Using this software, he analyzed millions of JPEG images from sites like eBay [57] and USENET [55], but
was unable to detect a single image with hidden data in it.
One of the objectives of this project, as mentioned in the original research proposal submitted to Midwest
Forensics Resource Center (MFRC), Ames Laboratory, is to develop a software that address the needs of
local police departments who perform computer forensic functions for steganalysis. Canvass is a cross-
platform software that has been designed after several meetings with Internet Crime Against Children Lab
(ICAC), Iowa investigators and understanding their requirement. It is developed in Java with a graphical
user interface which implements the steganalzer proposed in Chapter 3 earlier. The current version 1.0 is
shown in Figure 5.1 and provides following features:

• Ability to process multiple images with one command. User can specify the source of images from
following locations:

– Local Machine: User can specify multiple images located in different folders on the local machine
and the software will classify each image against the steganographic algorithms present in the
system.

– Web: User can specify a web address to steganalyze jpeg images on the internet starting from the
web address specified. Given a link, it searches for jpeg images on the page, and stores all the
links on that page which it has not visited. It then recursively performs a search for images on
those links in breadth first manner until there are no more new links to visit.
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Figure 5.1: Canvass - A software package for steganalysis

• Displays detailed processing information in real time. It shows various information such as steganog-
raphy algorithm used, time of processing along with other useful information. This is shown in Figure
5.2.

• Provides option to save the processing information at any time. A sample report is shown in 5.3c.

• Ability to stop the processing in between.

• Displays image for visual inspection.

• Ability to run on multiple platforms. In this version, it is currently supported for Windows and *nix
systems.

However, the current version only accepts JPEG images with width≥ 250 and height≥ 250. This restric-
tion ensures that features contains enough data to characterize the image as cover or stego. This software will
be made available from MFRC, Ames Laboratory for limited distribution to recognized police departments.

5.1 Implementation Details

A mutli-class classifier is implemented in Canvass with
(

n

2

)

binary classifiers where n is the number of classes.
In our case, n = 6 for cover, jsteg, outguess, f5, steghide and jphide. For an unknown image, features are
extracted and passed through all the binary classifiers and assign it the class which appeared maximum
time in all the binary classifiers. Model-View-Controller (MVC) architecture has been used to design this
software. Due to this reason, it can be easily extended using a different steganalyzer from backend, that is,
if additional binary classifiers are added.
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Figure 5.2: Canvass - Detailed Screen

5.2 Installer

Canvass comes with a jar excecutable file - Canvass.jar along with several other folders. To run this software,
user must have Java installed on their machine. The software can be started by either double clicking on
the software or from command line as

java -jar Canvass.jar

It comes with the following folder:

• log: This folder contains various messages generated during the execution of the software. It stores all
the error messages under error sub folder which can help to debug the application. It also stores the
results for every image under process sub folder so that results are not lost in case of any unexpected
failure of software or system. Finally it also stores a summary of the processing information under
general sub folder. A sample general and log file is shown in Figure 5.3a and 5.3b.

• external: This folder contains compiled code for feature extraction for Windows and Linux machine.
For every image, Canvass calls this code to extract the features from image and pass them to SVM for
testing purpose.

• lib: This folder contains necessary Java Swing libraries necessary to support the application.

• data: This folder contains following sub-folders:

– config: This folder contains various config files, logo of the software and other related files.

– manual: This folder contains a manual for easy use of the software.

– steganalyzer: This folder contains SVM model files for different binary SVM’s. Files for every
binary classifier is stored in sub folder i j. For example 0 1 folder represents SVM model files
for binary SVM between cover and jsteg class. We use the following numbering convention for
classes: 0 - Cover, 1 - Jsteg, 2- OutGuess, 3 - F5, 4 - Steghide, 5 - JPHide. In the future, if the
capability of Canvass needs to be extended to incorporate a new steganographic algorithm, all
that is required is to build binary SVM’s of the new class with every other existing class.

– workspace: This folder is used by the software to store any temporary files and images computed
during the execution of Canvass.
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(a) General Log (b) Process Log

(c) Sample report

Figure 5.3: (a)General and (b)Process Log file. (c) Sample report
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.1 Univariate Detection accuracy tables for Pevný Feature set [53]
for BOWS2 Database

10 20 30 40 50 60 70

Jsteg

Cover 97.56 99.04 99.06 99.32 99.66 99.66 99.78
0.05 bpc 88.02 96.94 98.14 98.78 98.62 98.70 98.84
0.10 bpc 99.58 99.60 99.80 99.90 99.92 99.92 99.98
0.20 bpc 99.96 99.98 99.98 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 97.32 97.78 98.36 98.28 98.24 98.28 98.36
0.05 bpc 89.64 91.30 94.06 94.40 94.98 94.98 95.32
0.10 bpc 99.98 99.90 99.96 99.96 99.96 100.00 100.00
0.20 bpc 100.00 99.98 100.00 100.00 99.98 99.98 100.00

F5

Cover 89.92 90.24 90.40 92.48 92.64 92.96 93.56
0.05 bpc 41.40 51.76 50.36 54.68 55.20 56.44 58.16
0.10 bpc 87.04 94.98 94.20 97.52 97.44 97.80 97.94
0.20 bpc 99.84 100.00 100.00 99.96 99.98 99.98 99.98
0.40 bpc 99.98 100.00 100.00 100.00 100.00 100.00 100.00

Steghide

Cover 87.78 88.90 90.84 91.20 90.60 90.76 90.62
0.05 bpc 59.02 62.88 65.62 65.78 65.74 66.64 68.10
0.10 bpc 76.26 80.98 84.94 85.52 85.66 86.22 86.46
0.20 bpc 94.46 97.02 98.58 98.64 98.80 98.84 98.78
0.40 bpc 99.86 99.98 99.96 99.96 99.96 99.98 99.96

JPHide

Cover 97.28 98.02 97.94 98.20 98.22 97.66 98.08
0.05 bpc 81.05 81.85 81.67 80.39 81.37 82.51 81.11
0.10 bpc 83.09 84.97 86.46 86.66 87.92 88.98 87.26
0.20 bpc 90.97 96.23 97.98 97.96 98.54 98.82 98.76
0.40 bpc 99.50 99.94 99.96 99.96 99.96 99.96 99.94

80 90 100 110 120 130 140

Jsteg

Cover 99.74 99.72 99.68 99.72 99.52 99.64 99.62
0.05 bpc 98.98 98.96 98.98 98.86 98.96 99.04 98.92
0.10 bpc 99.98 99.98 99.96 99.98 99.94 99.98 99.98
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 98.52 98.38 98.34 98.54 98.42 98.68 98.64
0.05 bpc 94.90 95.46 95.92 95.70 95.92 95.58 95.18
0.10 bpc 99.96 100.00 100.00 100.00 100.00 99.98 99.94
0.20 bpc 100.00 100.00 99.98 100.00 100.00 100.00 99.98

F5

Cover 93.28 93.08 93.46 93.54 93.54 93.22 93.22
0.05 bpc 58.42 59.24 58.78 58.92 59.02 58.70 59.28
0.10 bpc 97.76 98.06 98.16 98.16 98.28 98.24 98.32
0.20 bpc 99.96 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Steghide

Cover 90.58 90.60 91.50 91.86 92.02 92.02 92.00
0.05 bpc 67.92 68.56 67.74 68.18 67.66 67.00 67.64
0.10 bpc 86.78 86.88 87.00 87.46 87.12 87.02 87.14
0.20 bpc 99.02 99.06 98.96 98.90 98.82 98.72 98.76
0.40 bpc 100.00 100.00 99.98 100.00 99.94 99.94 99.94

JPHide

Cover 98.20 97.96 98.06 97.64 97.74 97.86 97.58
0.05 bpc 81.29 81.15 81.45 81.37 81.51 81.19 83.16
0.10 bpc 87.44 88.10 88.62 88.72 89.06 89.08 90.50
0.20 bpc 98.66 98.46 98.72 98.76 98.74 98.68 98.82
0.40 bpc 99.90 99.92 99.84 99.78 99.72 99.68 99.64
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150 160 170 180 190 200 210

Jsteg

Cover 99.64 99.66 99.68 99.64 99.56 99.54 99.62
0.05 bpc 99.12 99.08 99.12 99.10 98.98 99.08 99.12
0.10 bpc 99.98 99.98 99.98 99.98 99.98 99.98 100.00
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 98.74 98.68 98.74 98.72 98.58 98.66 98.60
0.05 bpc 95.42 95.50 95.62 95.72 95.64 95.76 95.50
0.10 bpc 99.94 99.94 99.96 99.98 99.98 100.00 99.96
0.20 bpc 99.96 99.94 100.00 100.00 100.00 100.00 100.00

F5

Cover 93.24 92.92 92.80 92.82 92.84 93.02 92.58
0.05 bpc 59.28 59.16 59.12 58.90 59.14 58.24 58.20
0.10 bpc 98.36 98.32 98.28 98.24 98.28 98.14 98.18
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Steghide

Cover 91.72 91.78 91.74 92.10 92.22 91.78 91.84
0.05 bpc 67.68 68.04 67.34 67.68 67.54 67.94 68.14
0.10 bpc 86.72 87.32 86.54 87.24 87.12 86.96 87.10
0.20 bpc 98.62 98.78 98.70 98.78 98.68 98.72 98.80
0.40 bpc 99.96 100.00 99.98 99.98 99.98 99.98 99.96

JPHide

Cover 97.52 97.42 97.52 97.66 97.50 97.38 97.36
0.05 bpc 83.26 83.24 83.18 83.14 82.88 83.26 83.38
0.10 bpc 91.16 91.14 90.92 91.14 90.74 90.88 91.14
0.20 bpc 98.78 98.84 98.84 98.82 98.76 98.78 98.72
0.40 bpc 99.66 99.66 99.64 99.70 99.68 99.68 99.78

220 230 240 250 260 270 274

Jsteg

Cover 99.60 99.62 99.62 99.54 99.64 99.62 99.64
0.05 bpc 99.18 99.20 99.18 99.08 99.14 99.14 99.10
0.10 bpc 100.00 100.00 100.00 99.98 100.00 100.00 100.00
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 98.72 98.74 98.68 98.82 98.78 98.92 98.78
0.05 bpc 95.60 95.58 95.32 95.26 95.04 95.48 95.26
0.10 bpc 99.98 99.96 99.96 99.94 99.92 99.94 99.92
0.20 bpc 100.00 100.00 100.00 100.00 100.00 99.98 99.98

F5

Cover 93.18 92.48 93.26 92.98 92.14 92.70 91.82
0.05 bpc 58.00 58.76 57.82 57.48 59.08 58.16 59.64
0.10 bpc 97.84 97.78 97.88 97.88 97.78 97.96 97.78
0.20 bpc 100.00 100.00 100.00 100.00 99.98 99.98 99.96
0.40 bpc 100.00 100.00 100.00 99.98 99.98 100.00 99.98

Steghide

Cover 91.46 91.42 91.44 91.34 91.52 91.52 91.78
0.05 bpc 67.68 67.70 67.86 67.72 70.06 69.68 69.52
0.10 bpc 86.78 86.86 87.28 86.94 88.12 88.00 87.96
0.20 bpc 98.66 98.70 98.70 98.64 98.82 98.72 98.72
0.40 bpc 99.96 99.98 99.94 99.94 99.96 99.98 99.96

JPHide

Cover 97.38 97.54 97.64 97.70 97.60 97.56 97.50
0.05 bpc 83.44 82.17 82.51 82.53 82.39 82.51 82.51
0.10 bpc 91.06 90.50 90.64 90.56 90.50 90.66 90.70
0.20 bpc 98.72 98.60 98.64 98.58 98.60 98.68 98.70
0.40 bpc 99.74 99.82 99.84 99.80 99.82 99.82 99.82
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.2 Multivariate Detection accuracy tables for Pevný Feature set
[53] for BOWS2 Database

10 20 30 40 50 60 70

Jsteg

Cover 99.20 99.12 99.18 99.56 99.54 99.54 99.54
0.05 bpc 97.64 97.86 98.96 99.02 99.04 99.04 99.28
0.10 bpc 99.92 99.88 99.98 99.98 99.96 100.00 100.00
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 97.00 97.98 98.44 98.42 98.44 98.64 98.58
0.05 bpc 89.98 92.60 94.10 94.16 94.30 94.14 94.30
0.10 bpc 99.98 99.98 99.96 99.96 100.00 100.00 99.98
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

F5

Cover 91.92 93.16 92.78 92.62 92.62 92.68 92.76
0.05 bpc 35.78 40.54 43.90 49.62 49.58 51.32 51.04
0.10 bpc 84.32 90.88 92.18 96.02 96.08 96.70 96.54
0.20 bpc 99.92 99.98 99.96 99.98 100.00 100.00 100.00
0.40 bpc 99.98 100.00 100.00 100.00 100.00 100.00 100.00

Steghide

Cover 88.70 90.82 91.94 91.88 92.26 91.86 91.86
0.05 bpc 64.74 68.26 67.48 67.74 68.56 68.22 68.38
0.10 bpc 83.12 86.62 86.24 86.88 87.34 87.66 87.80
0.20 bpc 97.46 98.74 98.68 98.70 98.72 98.86 98.76
0.40 bpc 100.00 99.98 99.96 99.98 99.98 99.98 99.98

JPHide

Cover 97.98 97.80 97.24 97.54 97.06 96.74 97.50
0.05 bpc 82.61 83.60 83.16 82.74 83.52 83.94 83.44
0.10 bpc 86.46 87.46 88.26 88.60 90.22 91.28 90.68
0.20 bpc 97.36 97.56 97.22 98.10 98.78 99.02 98.82
0.40 bpc 99.86 99.94 99.88 99.94 99.96 99.94 99.84

80 90 100 110 120 130 140

Jsteg

Cover 99.60 99.56 99.62 99.58 99.60 99.66 99.66
0.05 bpc 99.34 99.28 99.34 99.40 99.34 99.30 99.18
0.10 bpc 100.00 100.00 100.00 100.00 100.00 100.00 99.98
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 98.70 98.48 98.56 98.80 98.70 98.72 98.72
0.05 bpc 95.32 95.28 95.36 95.16 95.30 95.22 95.02
0.10 bpc 100.00 99.94 100.00 99.96 99.98 100.00 100.00
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

F5

Cover 93.08 93.16 93.02 92.82 92.76 92.78 93.12
0.05 bpc 51.10 51.16 50.88 51.84 51.90 52.10 56.20
0.10 bpc 96.56 96.60 96.56 96.58 96.46 96.44 97.92
0.20 bpc 100.00 100.00 100.00 100.00 99.98 99.98 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Steghide

Cover 92.10 91.78 91.72 91.54 91.38 91.40 91.52
0.05 bpc 68.66 68.58 69.14 69.12 69.04 68.68 68.88
0.10 bpc 87.96 87.72 88.08 87.98 87.92 87.74 87.66
0.20 bpc 98.74 98.82 98.88 98.84 98.86 98.70 98.80
0.40 bpc 99.98 99.98 99.98 99.98 99.98 99.98 99.98

JPHide

Cover 97.32 97.36 97.40 97.52 97.56 97.82 97.52
0.05 bpc 83.26 83.44 83.26 83.16 83.20 82.49 83.02
0.10 bpc 90.74 91.00 90.52 90.66 90.54 90.38 91.08
0.20 bpc 98.74 98.70 98.62 98.78 98.72 98.66 98.78
0.40 bpc 99.78 99.78 99.72 99.74 99.72 99.80 99.76
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150 160 170 180 190 200 210

Jsteg

Cover 99.68 99.60 99.48 99.48 99.52 99.50 99.56
0.05 bpc 99.22 99.26 99.12 99.30 99.30 99.24 99.12
0.10 bpc 99.98 99.98 99.96 99.96 99.98 99.98 99.96
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 98.56 98.70 98.82 98.74 98.74 98.72 98.66
0.05 bpc 95.30 95.24 95.32 95.12 95.26 95.30 95.28
0.10 bpc 100.00 99.96 100.00 99.98 99.98 99.98 100.00
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

F5

Cover 92.92 91.74 93.22 92.42 92.38 92.46 92.46
0.05 bpc 56.52 57.54 53.50 57.78 57.70 58.34 58.42
0.10 bpc 97.84 97.68 97.26 97.96 98.12 98.16 98.24
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 99.98 99.98 99.98 99.98 100.00

Steghide

Cover 91.68 91.56 91.68 91.36 91.50 91.76 91.72
0.05 bpc 69.08 69.88 69.46 68.96 68.72 69.34 69.66
0.10 bpc 87.82 88.14 88.18 87.40 87.24 88.22 87.96
0.20 bpc 98.74 98.84 98.86 98.72 98.82 98.78 98.66
0.40 bpc 99.98 100.00 100.00 99.98 100.00 100.00 99.98

JPHide

Cover 97.52 97.30 97.40 97.70 97.70 97.64 97.52
0.05 bpc 82.86 82.92 83.06 82.39 82.03 82.25 82.55
0.10 bpc 90.88 91.00 91.20 90.56 90.32 90.50 90.54
0.20 bpc 98.76 98.72 98.62 98.78 98.64 98.74 98.70
0.40 bpc 99.78 99.74 99.74 99.80 99.74 99.86 99.78

220 230 240 250 260 270 274

Jsteg

Cover 99.52 99.56 99.64 99.60 99.60 99.58 99.64
0.05 bpc 99.20 99.08 99.12 99.06 99.02 99.00 99.10
0.10 bpc 99.98 99.98 100.00 100.00 99.98 100.00 100.00
0.20 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.40 bpc 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Outguess

Cover 98.66 98.64 98.74 98.70 98.90 98.92 98.78
0.05 bpc 95.34 95.34 95.16 95.58 95.48 95.52 95.26
0.10 bpc 100.00 100.00 99.96 100.00 99.94 99.92 99.92
0.20 bpc 100.00 100.00 100.00 100.00 100.00 99.98 99.98

F5

Cover 92.54 92.46 92.34 92.44 92.20 91.62 91.82
0.05 bpc 58.20 58.66 58.50 58.52 59.18 59.50 59.64
0.10 bpc 98.10 98.02 97.96 97.80 97.96 97.78 97.78
0.20 bpc 99.98 100.00 100.00 99.98 99.98 99.96 99.96
0.40 bpc 99.98 99.98 100.00 100.00 100.00 99.98 99.98

Steghide

Cover 91.80 91.68 91.66 91.78 91.62 91.42 91.78
0.05 bpc 69.00 68.66 69.04 69.46 69.86 69.66 69.52
0.10 bpc 88.00 87.88 87.80 88.24 88.12 88.06 87.96
0.20 bpc 98.84 98.80 98.76 98.80 98.64 98.70 98.72
0.40 bpc 99.96 99.94 99.94 99.96 99.96 99.96 99.96

JPHide

Cover 97.60 97.50 97.48 97.52 97.52 97.56 97.50
0.05 bpc 82.45 82.53 82.49 82.43 82.57 82.57 82.51
0.10 bpc 90.50 90.64 90.56 90.44 90.46 90.74 90.70
0.20 bpc 98.76 98.70 98.68 98.42 98.68 98.76 98.70
0.40 bpc 99.82 99.82 99.80 99.80 99.78 99.82 99.82
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